

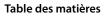
Manuel de configuration

VLT® AQUA Drive FC 202

110-800 kW, tailles des boîtiers D et E

Table des matières

1 Introduction	5
1.1 Objet du manuel de configuration	5
1.2 Ressources supplémentaires	5
1.3 Version de document et de logiciel	5
1.4 Conventions	5
2 Sécurité	6
2.1 Symboles de sécurité	6
2.2 Personnel qualifié	6
2.3 Précautions de sécurité	6
3 Homologations et certifications	8
3.1 Homologations réglementaires/de conformité	8
3.2 Protections nominales des boîtiers	10
4 Vue d'ensemble des produits	11
4.1 VLT [®] High-Power Drives	11
4.2 Taille de boîtier en fonction de la puissance	11
4.3 Vue d'ensemble des boîtiers, 380–500 V	12
4.4 Vue d'ensemble des boîtiers, 525–690 V	14
4.5 Disponibilité du kit	16
5 Caractéristiques du produit	17
5.1 Caractéristiques opérationnelles automatisées	17
5.2 Fonctions de protection de l'application	20
5.3 Fonctions spécifiques du VLT® AQUA Drive FC 202	24
5.4 Vue d'ensemble du contrôle en cascade	25
5.5 Vue d'ensemble du contrôleur de cascade de base	27
5.6 Vue d'ensemble du décolmatage	29
5.7 Vue d'ensemble de la pré/post-lubrification	29
5.8 Vue d'ensemble de la confirmation du débit	30
5.9 Vue d'ensemble de la surveillance de la vitesse minimum avancée	31
5.10 Vue d'ensemble du freinage dynamique	32
5.11 Vue d'ensemble de la répartition de la charge	32
5.12 Vue d'ensemble de la régénération	33
5.13 Vue d'ensemble du refroidissement par le canal de ventilation arrière	34
6 Vue d'ensemble des options et accessoires	37
6.1 Dispositifs de bus de terrain	37
6.2 Extensions fonctionnelles	38
6.3 Contrôle de mouvement et cartes relais	39



	6.4 Resistances de freinage	39
	6.5 Filtres sinus	39
	6.6 Filtres dU/dt	39
	6.7 Filtres en mode commun	39
	6.8 Filtres harmoniques	40
	6.9 Kits haute puissance	40
7	Spécifications	41
	7.1 Données électriques, 380-480 V	41
	7.2 Données électriques, 525–690 V	45
	7.3 Alimentation secteur	52
	7.4 Puissance et données du moteur	52
	7.5 Conditions ambiantes	52
	7.6 Spécifications du câble	53
	7.7 Entrée/sortie de commande et données de commande	53
	7.8 Poids des boîtiers	56
8	Dimensions extérieures et des bornes	57
	8.1 Dimensions extérieures et des bornes D1h	57
	8.2 Dimensions extérieures et des bornes D2h	63
	8.3 Dimensions extérieures et des bornes D3h	69
	8.4 Dimensions extérieures et des bornes D4h	74
	8.5 Dimensions extérieures et des bornes D5h	79
	8.6 Dimensions extérieures et des bornes D6h	88
	8.7 Dimensions extérieures et des bornes D7h	99
	8.8 Dimensions extérieures et des bornes D8h	109
	8.9 Dimensions extérieures et des bornes E1h	120
	8.10 Dimensions extérieures et des bornes E2h	126
	8.11 Dimensions extérieures et des bornes E3h	132
	8.12 Dimensions extérieures et des bornes E4h	139
9	Considérations relatives à l'installation mécanique	146
	9.1 Stockage	146
	9.2 Levage de l'unité	146
	9.3 Environnement de fonctionnement	146
	9.4 Considérations relatives au montage	148
	9.5 Refroidissement	148
	9.6 Déclassement	149
10	O Considérations relatives à l'installation électrique	153
	10.1 Consignes de sécurité	153
	10.2 Schéma de câblage	154

	10.3 Connexions	155
	10.4 Câblage et bornes de commande	156
	10.5 Fusibles et disjoncteurs	160
	10.6 Moteur	162
	10.7 Freinage	164
	10.8 Relais de protection différentielle (RCD) et dispositif de surveillance de la résistance d'isolation (IRM)	167
	10.9 Courant de fuite	167
	10.10 Secteur IT	169
	10.11 Rendement	169
	10.12 Bruit acoustique	170
	10.13 Conditions dU/dt	170
	10.14 Vue d'ensemble de la compatibilité électromagnétique (CEM)	176
	10.15 Installation selon critères CEM	180
	10.16 Présentation des harmoniques	182
11	Principes de fonctionnement de base d'un variateur	185
	11.1 Description du fonctionnement	185
	11.2 Contrôles d'entraînement	185
12	2 Exemples d'applications	195
	12.1 Configurations de câblage pour l'adaptation automatique au moteur (AMA)	195
	12.2 Configurations de câblage pour la référence de vitesse analogique	195
	12.3 Configurations de câblage pour marche/arrêt	196
	12.4 Configurations de câblage pour une réinitialisation d'alarme externe	197
	12.5 Configuration de câblage pour la référence de vitesse à l'aide d'un potentiomètre manuel	198
	12.6 Configuration de câblage pour l'accélération/décélération	198
	12.7 Configuration de câblage pour le raccordement du réseau RS485	198
	12.8 Configuration de câblage pour une thermistance moteur	199
	12.9 Configuration de câblage pour une configuration de relais avec contrôleur logique avancé	199
	12.10 Configuration de câblage pour une pompe submersible	200
	12.11 Configuration de câblage pour un contrôleur de cascade	202
	12.12 Configuration de câblage pour une pompe à vitesse fixe/variable	203
	12.13 Configuration de câblage pour une alternance de pompe principale	203
13	Comment commander un variateur	204
	13.1 Système de configuration du variateur	204
	13.2 Références des options et accessoires	207
	13.3 Références pour les filtres et résistances de freinage	212
	13.4 Pièces de rechange	212

Table des matières VLT® AQUA Drive FC 202

14 Annexe	213
14.1 Abréviations et symboles	213
14.2 Définitions	214
Indice	216

1 Introduction

1.1 Objet du manuel de configuration

Ce manuel de configuration a été rédigé à l'attention des :

- ingénieurs de projets et systèmes ;
- consultants en conception;
- spécialistes des applications et produits.

Le manuel de configuration fournit des informations techniques qui permettent de comprendre les capacités du variateur pour une intégration dans des systèmes de contrôle et de surveillance de moteurs.

VLT® est une marque déposée.

1.2 Ressources supplémentaires

D'autres ressources sont disponibles pour bien comprendre les fonctions avancées et la programmation, ainsi que le respect des directives.

- Le manuel d'utilisation vise à fournir des informations détaillées sur l'installation et la mise en marche du variateur.
- Le guide de programmation fournit de plus amples détails sur la gestion des paramètres et donne de nombreux exemples d'applications.
- Le manuel d'utilisation de la fonction Safe Torque Off de la série VLT® FC décrit comment utiliser les variateurs Danfoss dans des applications de sécurité fonctionnelle. Ce manuel est fourni avec le variateur lorsque l'option Safe Torque Off est disponible.
- Le manuel de configuration du VLT® Brake Resistor MCE 101 explique comment sélectionner la résistance de freinage optimale.
- Le manuel de configuration des VLT® Advanced Harmonic Filters AHF 005/AHF 010 décrit les harmoniques, les divers procédés d'atténuation et le principe de fonctionnement du filtre harmonique avancé. Ce manuel décrit également comment choisir le filtre harmonique avancé adapté à une application donnée.
- Le manuel de configuration des filtres de sortie explique pourquoi il est nécessaire d'utiliser des filtres de sortie pour certaines applications, et décrit comment choisir le filtre sinus ou dU/dt optimal.
- La présence d'équipements optionnels peut changer certaines des procédures décrites. Pour des exigences spécifiques, lire les instructions fournies avec les options.

Des publications et des manuels supplémentaires sont disponibles auprès de Danfoss. Voir *drives.danfoss.com/downloads/portal/#/* pour en obtenir la liste.

1.3 Version de document et de logiciel

Ce manuel est régulièrement révisé et mis à jour. Toutes les suggestions d'amélioration sont les bienvenues. Le *Tableau 1.1* indique la version du document et la version logicielle correspondante.

Édition	Remarques	Version logicielle
MG22B2xx	Ajout de contenu D1h-D8h	3.10

Tableau 1.1 Version de document et de logiciel

1.4 Conventions

- Les listes numérotées correspondent à des procédures.
- Les listes à puce fournissent d'autres informations et décrivent les illustrations.
- Les textes en italique indiquent :
 - Références croisées
 - Liens
 - Notes de bas de page
 - Nom de paramètre, nom de groupe de paramètres, option de paramètre
- Sur les schémas, toutes les dimensions sont en mm (po).
- L'astérisque (*) indique un réglage par défaut d'un paramètre.

2

2 Sécurité

2.1 Symboles de sécurité

Les symboles suivants sont utilisés dans ce manuel :

AAVERTISSEMENT

Indique une situation potentiellement dangereuse qui peut entraîner des blessures graves ou le décès.

AATTENTION

Indique une situation potentiellement dangereuse qui peut entraîner des blessures superficielles à modérées. Ce signe peut aussi être utilisé pour mettre en garde contre des pratiques non sûres.

AVIS!

Fournit des informations importantes, notamment sur les situations qui peuvent entraîner des dégâts matériels.

2.2 Personnel qualifié

Seul du personnel qualifié est autorisé à installer ou utiliser cet équipement.

Par définition, le personnel qualifié est un personnel formé, autorisé à installer, mettre en service et maintenir l'équipement, les systèmes et les circuits conformément aux lois et aux réglementations en vigueur. En outre, il doit être familiarisé avec les instructions et les mesures de sécurité décrites dans ce manuel.

2.3 Précautions de sécurité

AAVERTISSEMENT

HAUTE TENSION

Les variateurs contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA, à l'alimentation CC, à la répartition de la charge ou à des moteurs à aimants permanents. La non-utilisation de personnel qualifié pour l'installation, le démarrage et la maintenance du variateur peut entraîner la mort ou des blessures graves.

 L'installation, le démarrage et la maintenance du variateur doivent être effectués uniquement par du personnel qualifié.

AAVERTISSEMENT

TEMPS DE DÉCHARGE

Le variateur contient des condensateurs dans le circuit intermédiaire qui peuvent rester chargés même lorsque le variateur n'est pas alimenté. Une haute tension peut être présente même lorsque les voyants d'avertissement sont éteints. Le non-respect du temps d'attente spécifié dans le *Tableau 2.1* après la mise hors tension avant un entretien ou une réparation peut entraîner le décès ou des blessures graves.

- 1. Arrêter le moteur.
- Déconnecter le secteur CA et les alimentations à distance du circuit CC, y compris les batteries de secours, les alimentations sans interruption et les connexions du circuit intermédiaire aux autres variateurs.
- 3. Déconnecter ou verrouiller le moteur.
- 4. Attendre que les condensateurs soient complètement déchargés. Se reporter au *Tableau 2.1*.
- Avant tout entretien ou toute réparation, utiliser un dispositif de mesure de tension approprié pour s'assurer que les condensateurs sont complètement déchargés.

Tension	Dimensionnement puissance (surcharge normale)	Boîtier	Minutes jusqu'à la décharge
380–480	110–315 kW 150–450 HP	D1h-D8h	20
380–480	355–560 kW 500–750 HP	E1h–E4h	40
525–690	75–400 kW 75–400 HP	D1h-D8h	20
525–690	450–800 kW 450–950 HP	E1h–E4h	40

Tableau 2.1 Temps de décharge pour les boîtiers D1h-D8h et E1h-E4h

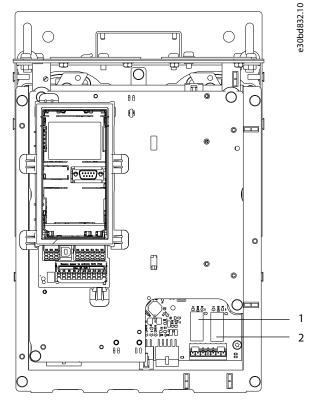
AAVERTISSEMENT

RISQUE DE COURANT DE FUITE

Les courants de fuite à la terre dépassent 3,5 mA. Le fait de ne pas mettre le variateur à la terre peut entraîner le décès ou des blessures graves.

 L'équipement doit être correctement mis à la terre par un installateur électrique certifié.

AVIS!


OPTION DE SÉCURITÉ BLINDAGE SECTEUR

Une option de blindage secteur est disponible pour les boîtiers de protection IP21/IP54 (Type 1/Type 12). Le blindage secteur est un cache installé dans le boîtier en guise de protection contre le contact accidentel avec les bornes d'alimentation, conformément à BGV A2, VBG 4.

2.3.1 Installation selon les critères ADN

Afin d'empêcher la formation d'étincelles conformément à l'Accord européen relatif au transport international des marchandises dangereuses par voie de navigation intérieure (ADN), il convient de prendre des précautions pour les variateurs avec un niveau de protection IP00 (châssis), IP20 (châssis), IP21 (type 1) ou IP54 (type 12).

- Ne pas installer de sectionneur secteur.
- Vérifier que le *paramétre 14-50 RFI Filter* est réglé sur [1] Actif.
- Retirer toutes les fiches relais marquées RELAY.
 Voir l'Illustration 2.1.
- Vérifier quelles options relais sont installées le cas échéant. La seule option relais autorisée est la VLT® Extended Relay Card MCB 113.

1, 2 Fiches relais

Illustration 2.1 Emplacement des fiches relais

3

3 Homologations et certifications

Cette section décrit brièvement les diverses homologations et certifications qui s'appliquent aux variateurs Danfoss. Ces homologations ne s'appliquent pas à tous les variateurs.

3.1 Homologations réglementaires/de conformité

AVIS!

LIMITES IMPOSÉES SUR LA FRÉQUENCE DE SORTIE

À partir de la version logicielle 1.99, la fréquence de sortie du variateur est limitée à 590 Hz, compte tenu des réglementations sur le contrôle d'exportation.

3.1.1.1 Marquage CE

Le marquage CE (Communauté européenne) indique que le fabricant du produit se conforme à toutes les directives CE applicables. Les directives UE applicables à la conception et à la fabrication des variateurs sont répertoriées dans le *Tableau 3.1*.

AVIS!

Le marquage CE ne fournit aucune information sur la qualité du produit. Les spécifications techniques ne peuvent pas être déduites du marquage CE.

Directive UE	Version
Directive Basse Tension	2014/35/EU
Directive CEM	2014/30/EU
Directive Machines ¹⁾	2014/32/EU
Directive ErP	2009/125/EC
Directive ATEX	2014/34/EU
Directive RoHS	2002/95/EC

Tableau 3.1 Directives UE applicables aux variateurs

1) La conformité à la directive Machines est requise uniquement pour les variateurs avec fonction de sécurité intégrée.

AVIS!

Les variateurs avec fonction de sécurité intégrée, comme la fonction Safe Torque Off (STO), doivent se conformer à la directive Machines.

Les déclarations de conformité sont disponibles à la demande.

Directive Basse Tension

Dans le cadre de la directive Basse Tension du 1^{er} janvier 2014, un marquage CE doit être apposé sur les variateurs. Cette directive s'applique à tous les appareils électriques utilisés dans les plages de tension allant de 50 à 1 000 V CA et de 75 à 1 500 V CC. La directive vise à garantir la sécurité individuelle et à éviter les dégâts matériels, à condition que les équipements électriques soient installés, entretenus et utilisés correctement, pour l'application prévue.

Directive CEM

La directive CEM (compatibilité électromagnétique) vise à réduire les interférences électromagnétiques et à améliorer l'immunité des équipements et installations électriques. Les conditions de base relatives à la protection de la directive CEM indiquent que les dispositifs qui génèrent des interférences électromagnétiques (EMI) ou dont le fonctionnement peut être affecté par les EMI doivent être conçus pour limiter la génération d'interférences électromagnétiques. Les dispositifs doivent présenter un degré d'immunité adapté vis-à-vis des EMI lorsqu'ils sont correctement installés, entretenus et utilisés conformément à l'usage prévu.

Les dispositifs des équipements électriques utilisés seuls ou intégrés à un système doivent porter le marquage CE. Les systèmes ne requièrent pas le marquage CE mais doivent être conformes aux conditions relatives à la protection de base de la directive CEM.

Directive Machines

La directive Machines vise à garantir la sécurité individuelle et à éviter les dégâts matériels de l'équipement mécanique utilisé pour l'application prévue. La directive Machines s'applique aux machines composées d'un ensemble de composants ou de dispositifs interconnectés dont au moins un est capable de mouvements mécaniques.

Les variateurs avec fonction de sécurité intégrée doivent être conformes à la directive Machines. Les variateurs sans fonction de sécurité ne sont pas concernés par cette directive. Si un variateur est intégré à un système de machines, Danfoss précise les règles de sécurité applicables au variateur.

Lorsque les variateurs sont utilisés sur des machines comportant au moins une pièce mobile, le fabricant de la machine doit fournir une déclaration précisant la conformité avec toutes les lois et mesures de sécurité applicables.

3.1.1.2 Directive ErP

La directive ErP est la directive européenne relative à l'écoconception des produits liés à la production d'énergie, comme les variateurs. Cette directive vise à augmenter l'efficacité énergétique et le niveau de protection de l'environnement, tout en développant la sécurité de l'approvisionnement énergétique. L'impact environnemental des produits liés à la production d'énergie inclut la consommation d'énergie pendant toute la durée de vie du produit.

3.1.1.3 Homologation UL

La marque Underwriters Laboratory (UL) certifie la sécurité des produits et leurs déclarations environnementales sur la base d'essais normalisés. Les variateurs de tension T7 (525–690 V) sont homologués UL uniquement pour 525–600 V. Le variateur est conforme aux exigences de sauvegarde de la capacité thermique de la norme UL 61800-5-1. Pour plus d'informations, se reporter au *chapitre 10.6.1 Protection thermique du moteur*.

3.1.1.4 CSA/cUL

L'homologation CSA/cUL concerne les variateurs de fréquence de tension nominale inférieure ou égale à 600 V. Cette norme garantit que, lorsque le variateur est installé conformément au manuel d'utilisation/au guide d'installation fourni, l'équipement satisfait aux normes UL en matière de sécurité électrique et thermique. Cette marque certifie que le produit est conforme à toutes les spécifications techniques requises et a passé tous les essais requis. Un certificat de conformité est fourni sur demande.

3.1.1.5 EAC

La marque EAC (EurAsian Conformity, conformité eurasiatique) indique que le produit est conforme à toutes les exigences et réglementations techniques applicables dans le cadre de l'Union douanière eurasiatique, qui se compose des États membres de l'Union économique eurasiatique.

Le logo EAC doit se trouver sur l'étiquette du produit et sur l'étiquette de l'emballage. Tous les produits utilisés dans la zone EAC doivent être achetés auprès de Danfoss au sein de la zone EAC.

3.1.1.6 UKrSEPRO

Le certificat UKrSEPRO garantit la qualité et la sécurité des produits et services, ainsi que la stabilité de fabrication, conformément aux normes réglementaires ukrainiennes. Le certificat UkrSepro est un document requis pour le dédouanement de tous les produits entrant et sortant du territoire ukrainien.

3.1.1.7 TÜV

TÜV SÜD est un organisme de sécurité européen certifiant la sécurité fonctionnelle du variateur conformément à la norme EN/CEI 61800-5-2. TÜV SÜD teste les produits et surveille leur production pour s'assurer que les entreprises se conforment aux réglementations applicables.

3.1.1.8 RCM

La marque RCM (Regulatory Compliance Mark, marque de conformité réglementaire) indique la conformité des équipements de télécommunications et de radiocommunications/CEM avec la déclaration de marquage CEM de l'Australian Communications and Media Authority. La marque RCM est désormais une marque de conformité unique couvrant les marques de conformité A-Tick et C-Tick. Cette marque doit être apposée sur les dispositifs électriques et électroniques mis sur le marché en Australie et en Nouvelle-Zélande.

3.1.1.9 Marine

Les applications marines (navires et plateformes pétrolières/gazières) doivent avoir obtenu une certification de l'une des sociétés de certification maritime leur permettant de recevoir une licence réglementaire et une assurance. Les variateurs de la série Danfoss VLT® AQUA Drive sont certifiés par près de 12 sociétés de certification maritime différentes.

Pour consulter ou imprimer les approbations et les certificats des applications marines, accéder à la zone de téléchargement du site *drives.danfoss.com/industries/marine-and-offshore/marine-type-approvals/#/*.

3.1.2 Réglementations sur le contrôle d'exportation

Les variateurs peuvent être soumis à des réglementations régionales et/ou nationales sur le contrôle d'exportation.

Un numéro ECCN est utilisé pour classer tous les variateurs soumis à des réglementations sur le contrôle d'exportation. Le numéro ECCN est indiqué dans les documents fournis avec le variateur.

En cas de réexportation, il incombe à l'exportateur de veiller au respect des réglementations sur le contrôle d'exportation en vigueur.

3

3.2 Protections nominales des boîtiers

Les variateurs de la série VLT® sont disponibles en plusieurs types de protection afin de s'adapter aux besoins de l'application. Les protections nominales des boîtiers sont conformes à deux normes internationales :

- Le type UL confirme que les boîtiers sont conformes aux normes de NEMA (National Electrical Manufacturers Association). Les exigences de construction et de test des boîtiers sont indiquées dans la publication 250-2003 des normes NEMA et dans la onzième édition d'UL
- Classes IP (Ingress Protection) décrites par la CEI (Commission électrotechnique internationale) dans le reste du monde.

Les variateurs standard VLT[®] de Danfoss sont disponibles en plusieurs types de protection afin de satisfaire aux exigences des classes IP00 (châssis), IP20 (châssis protégé), IP21 (type UL 1) ou IP54 (type UL 12). Dans ce manuel, le type UL est indiqué par « Type », p. ex. IP21/Type 1.

Exigences de type UL

Type 1 – Boîtiers conçus pour une utilisation en intérieur afin d'offrir un degré de protection au personnel contre tout contact accidentel avec les unités protégées et d'obtenir un degré de protection contre la chute de poussière.

Type 12 – Boîtiers à usage général destinés à une utilisation en intérieur afin de protéger les unités fermées contre les éléments suivants :

- fibres;
- peluches;

- poussière et saletés ;
- projections légères ;
- infiltration;
- égouttement et condensation externe de liquides non corrosifs.

Il ne doit pas y avoir de trous dans le boîtier, ni d'alvéoles défonçables ou d'ouvertures dans les conduits, sauf en cas d'utilisation avec des joints résistant à l'huile destinés au montage de mécanismes étanches à l'huile ou à la poussière. Les portes sont aussi munies de joints résistant à l'huile. De plus, les boîtiers pour combinaison de contrôleurs sont dotés de portes à charnières, qui s'ouvrent horizontalement et dont l'ouverture nécessite un outil.

Norme IP

Le *Tableau 3.2* donne les références croisées des 2 normes. Le *Tableau 3.3* indique comment lire le numéro IP et définit les niveaux de protection. Les variateurs satisfont aux exigences des deux.

NEMA et	IP
UL	
Châssis	IP00
Châssis	IP20
protégé	
Type 1	IP21
Type 12	IP54

Tableau 3.2 Références croisées des numéros IP et NEMA

1 ^{er} chiffre	2 ^e chiffre	Niveau de protection
0	_	Aucune protection.
1	_	Protégé sur 50 mm (2,0 po). Impossible de passer les mains dans le boîtier.
2	-	Protégé sur 12,5 mm (0,5 po). Impossible de passer les doigts dans le boîtier.
3	_	Protégé sur 2,5 mm (0,1 po). Impossible de passer des outils dans le boîtier.
4	-	Protégé sur 1,0 mm (0,04 po). Impossible de passer des fils dans le boîtier.
5	-	Protégé contre la poussière – pénétration limitée.
6	-	Totalement protégé contre la poussière.
_	0	Aucune protection.
_	1	Protégé contre les chutes verticales de gouttes d'eau.
_	2	Protégé contre les chutes de gouttes d'eau suivant un angle de 15°.
_	3	Protégé contre les chutes d'eau suivant un angle de 60°.
_	4	Protégé contre les projections d'eau.
_	5	Protégé contre les jets d'eau.
_	6	Protégé contre les jets d'eau forts.
-	7	Protégé contre l'immersion temporaire.
-	8	Protégé contre l'immersion permanente.

Tableau 3.3 Ventilation des numéros IP

4 Vue d'ensemble des produits

4.1 VLT® High-Power Drives

Les variateurs VLT® décrits dans ce manuel sont disponibles sous forme d'unités autonomes, à montage mural ou montées dans une armoire. Chaque variateur VLT® peut être configuré et réalise des performances optimisées avec tous les types de moteur, ce qui permet d'éviter les restrictions liées aux accords groupés moteur/ variateur.

Avantages des variateurs VLT®

- Disponibles dans plusieurs tailles de boîtier et niveaux de protection
- Le rendement de 98 % réduit les coûts de fonctionnement.
- La conception de refroidissement par canal de ventilation arrière unique minimise la nécessité d'équipements de refroidissement supplémentaires, limitant ainsi les coûts d'installation et les coûts récurrents.
- Consommation d'énergie réduite pour l'équipement de refroidissement de la salle de commande.
- Coûts de possession réduits.
- Interface utilisateur uniforme dans toute la gamme de variateurs Danfoss.
- Assistants de configuration axés sur les applications.
- Interface utilisateur multilingue.

4.2 Taille de boîtier en fonction de la puissance

kW ¹⁾	HP ¹⁾	Boîtiers disponibles
110	150	D1h/D3h/D5h/D6h
132	200	D1h/D3h/D5h/D6h
160	250	D1h/D3h/D5h/D6h
200	300	D2h/D4h/D7h/D8h
250	350	D2h/D4h/D7h/D8h
315	450	D2h/D4h/D7h/D8h
355	500	E1h/E3h
400	600	E1h/E3h
450	600	E1h/E3h
500	650	E2h/E4h
560	750	E2h/E4h

Tableau 4.1 Dimensionnement puissance des boîtiers, 380-480 V

La sortie est mesurée à 400 V (kW) et 460 V (HP).

kW ¹⁾	HP ¹⁾	Boîtiers disponibles
75	75	D1h/D3h/D5h/D6h
90	100	D1h/D3h/D5h/D6h
110	125	D1h/D3h/D5h/D6h
132	150	D1h/D3h/D5h/D6h
160	200	D1h/D3h/D5h/D6h
200	250	D2h/D4h/D7h/D8h
250	300	D2h/D4h/D7h/D8h
315	350	D2h/D4h/D7h/D8h
400	400	D2h/D4h/D7h/D8h
450	450	E1h/E3h
500	500	E1h/E3h
560	600	E1h/E3h
630	650	E1h/E3h
710	750	E2h/E4h
800	950	E2h/E4h

Tableau 4.2 Dimensionnement puissance des boîtiers, 525-690 V

1) Tous les dimensionnements puissance sont pris à surcharge normale.

La sortie est mesurée à 690 V (kW) et 575 V (HP).

¹⁾ Tous les dimensionnements puissance sont pris à surcharge normale.

4

4.3 Vue d'ensemble des boîtiers, 380-500 V

Taille de boîtier	D1h	D2h	D3h	D4h	D5h	D6h	D7h	D8h	
Dimensionnement puiss	ance ¹⁾								
Sortie à 400 V (kW)	110–160	200–315	110–160	200–315	110–160	110–160	200–315	200–315	
Sortie à 460 V (HP)	150–250	300–450	150-250	300-450	150-250	150-250	300–450	300–450	
Protection nominale									
IP	IP21/54	IP21/54	IP20	IP20	IP21/54	IP21/54	IP21/54	IP21/54	
NEMA	Type 1/12	Type 1/12	Type châssis	Type châssis	Type 1/12	Type 1/12	Type 1/12	Type 1/12	
Options matérielles ²⁾		•						•	
Canal de ventilation	0	0	0	0	0	0	0	0	
arrière en acier									
inoxydable									
Plaque de protection									
contre les pièces nues	0	0	_	-	0	0	0	0	
sous tension									
Réchauffeur anti-	0	0	_	_	0	0	0	o	
condensation	<u> </u>				Ŭ			Ŭ	
Filtre RFI (classe A1)	0	0	0	0	0	0	0	0	
Safe Torque Off	S	S	S	S	S	S	S	S	
Sans LCP	0	0	0	0	0	0	0	0	
LCP numérique	0	0	0	0	0	0	0	0	
LCP graphique	0	0	0	0	0	0	0	0	
Fusibles	0	0	0	0	0	0	0	0	
Accès au dissipateur de	0	0	0	0	0	0	0	0	
chaleur ³⁾	O	U		O		O	O		
Hacheur de freinage	-	-	0	0	0	0	0	0	
Bornes régénératrices	-	-	0	0	0	0	0	0	
Bornes de répartition	_	_	0	0	_	-	_		
de la charge	1	_	O	0	_	-	-	_	
Fusibles + répartition	_	_	0	0	_	-	_	_	
de la charge			0	O					
Sectionneur	_	-	-	-	-	0	-	0	
Disjoncteurs	ı	_	_	ı	_	0	ı	0	
Contacteurs	ı	_	_	ı	_	0	-	0	
Alimentation 24 V CC	0	0	0	0	0	0	0	0	
Dimensions									
Hauteur, mm (po)	901 (35,5)	1 107 (43,6)	909 (35,8)	1 027 (40,4)	1 324 (52,1)	1 663 (65,5)	1 978 (77,9)	2 284 (89,9)	
			1 004	1 027					
			(39,5) ⁴⁾	$(40,4)^{4)}$					
Largeur, mm (po)	325 (12,8)	325 (12,8)	250 (9,8)	375 (14,8)	325 (12,8)	325 (12,8)	420 (16,5)	420 (16,5)	
Profondeur, mm (po)	379 (14,9)	379 (14,9)	375 (14,8)	375 (14,8)	381 (15,0)	381 (15,0)	386 (15,2)	406 (16,0)	
Poids, kg (lb)	62 (137)	125 (276)	62 (137)	125 (276)	99 (218)	128 (282)	185 (408)	232 (512)	
			108 (238) ⁴⁾	179 (395) ⁴⁾					

Tableau 4.3 Variateurs D1h-D8h, 380-480 V

- 1) Tous les dimensionnements puissance sont pris à surcharge normale. La sortie est mesurée à 400 V (kW) et 460 V (HP).
- 2) S = standard, O = en option, et un tiret indique que cette option n'est pas disponible.
- 3) L'accès au dissipateur de chaleur n'est pas disponible avec l'option de canal de ventilation arrière en acier inoxydable.
- 4) Avec bornes régénératrices et de répartition de la charge en option.

Taille de boîtier	E1h	E2h	E3h	E4h
Dimensionnement puissance ¹⁾		•	•	
Sortie à 400 V (kW)	355–450	500-560	355–450	500-560
Sortie à 460 V (HP)	500-600	650–750	500-600	650–750
Protection nominale			•	
IP	IP21/54	IP21/54	IP20 ²⁾	IP20 ²⁾
Type UL	Type 1/12	Type 1/12	Châssis	Châssis
Options matérielles ³⁾			•	
Canal de ventilation arrière en acier inoxydable	0	0	0	0
Plaque de protection contre les pièces nues sous tension	0	0	-	-
Réchauffeur anti-condensation	0	0	-	-
Filtre RFI (classe A1)	0	0	0	0
Safe Torque Off	S	S	S	S
Sans LCP	0	0	0	0
LCP graphique	0	0	0	0
Fusibles	S	S	0	0
Accès au dissipateur de chaleur	0	0	0	0
Hacheur de freinage	0	0	0	0
Bornes régénératrices	0	0	0	0
Bornes de répartition de la charge	-	-	0	0
Fusibles + répartition de la charge	-	-	0	0
Sectionneur	0	0	-	-
Disjoncteurs	-	_	-	-
Contacteurs	-	_	-	-
Alimentation 24 V CC (SMPS, 5 A)	-	_	-	-
Dimensions				
Hauteur, mm (po)	2 043 (80,4)	2 043 (80,4)	1 578 (62,1)	1 578 (62,1)
Largeur, mm (po)	602 (23,7)	698 (27,5)	506 (19,9)	604 (23,9)
Profondeur, mm (po)	513 (20,2)	513 (20,2)	482 (19,0)	482 (19,0)
Poids, kg (lb)	295 (650)	318 (700)	272 (600)	295 (650)

Tableau 4.4 Variateurs E1h-E4h, 380-480 V

4

¹⁾ Tous les dimensionnements puissance sont pris à surcharge normale. La sortie est mesurée à 400 V (kW) et 460 V (HP).

²⁾ Si les boîtiers sont configurés avec des bornes de répartition de la charge ou régénératrices, ils présentent un niveau de protection IP00 ; dans le cas contraire, ils présentent un niveau de protection IP20.

³⁾ S = standard, O = en option, et un tiret indique que cette option n'est pas disponible.

4

4.4 Vue d'ensemble des boîtiers, 525-690 V

Taille de boîtier	D1h	D2h	D3h	D4h	D5h	D6h	D7h D8h		
Dimensionnement puiss	ance ¹⁾								
Sortie à 690 V (kW)	75–160	200-400	75–160	200-400	75–160	75–160	200-400	200–400	
Sortie à 575 V (HP)	75–200	250-400	75–200	250-400	75–200	75–200 75–200 250–400			
Protection nominale									
IP	IP21/54	IP21/54	IP20	IP20	IP21/54	IP21/54	IP21/54	IP21/54	
NEMA	Type 1/12	Type 1/12	Type châssis	Type châssis	Type 1/12	Type 1/12	Type 1/12	Type 1/12	
Options matérielles ²⁾									
Canal de ventilation	-	-	0	0	-	-	-	-	
arrière en acier									
inoxydable									
Plaque de protection									
contre les pièces nues	0	0	0	0	0	0	0	0	
sous tension									
Réchauffeur anti-	0	0	0	0	0	0	0	0	
condensation		_		_				-	
Safe Torque Off	S	S	S	S	S	S	S	S	
Sans LCP	0	0	0	0	0	0	0	0	
LCP numérique	0	0	0	0	0	0	0	0	
LCP graphique	0	0	0	0	0	0	0	0	
Fusibles	0	0	0	0	0	0	0	0	
Accès au dissipateur de	0	0	0	0	0	0	0	О	
chaleur ³⁾))	Ŭ)	Ŭ	Ü	
Hacheur de freinage	I	_	0	0	0	0	0	XO	
Bornes régénératrices	-	-	0	0	-	-	-	-	
Bornes de répartition	ornes de répartition		0	0	0	0	0	o	
de la charge									
Fusibles + répartition	_	_	0	0	_	_	_	_	
de la charge									
Sectionneur	-	-	-	-	0	0	0	0	
Disjoncteurs	-	-	-	-	-	0	-	0	
Contacteurs	_	-	-	-	_	0	_	0	
Alimentation 24 V CC	0	0	0	0	0	0	0	0	
Dimensions		Γ					T		
Hauteur, mm (po)	901 (35,5)	1 107 (43,6)	909 (35,8)	1 027 (40,4)	1 324 (52,1)	1 663 (65,5)	1 978 (77,9)	2 284 (89,9)	
			1 004	1 027					
			(39,5) ⁴⁾	(40,4) ⁴⁾					
Largeur, mm (po)	325 (12,8)	325 (12,8)	250 (9,8)	375 (14,8)	325 (12,8)	325 (12,8)	420 (16,5)	420 (16,5)	
Profondeur, mm (po)	379 (14,9)	379 (14,9)	375 (14,8)	375 (14,8)	381 (15,0)	381 (15,0)	386 (15,2)	406 (16,0)	
Poids, kg (lb)	62 (137)	125 (276)	62 (137)	125 (276)	99 (218)	128 (282)	185 (408)	232 (512)	
			108 (238) ⁴⁾	179 (395) ⁴⁾					

Tableau 4.5 Variateurs D1h-D8h, 525-690 V

- 1) Tous les dimensionnements puissance sont pris à surcharge normale. La sortie est mesurée à 690 V (kW) et 575 V (HP).
- 2) S = standard, O = en option, et un tiret indique que cette option n'est pas disponible.
- 3) L'accès au dissipateur de chaleur n'est pas disponible avec l'option de canal de ventilation arrière en acier inoxydable.
- 4) Avec bornes régénératrices et de répartition de la charge en option.

Taille de boîtier	E1h	E2h	E3h	E4h
Dimensionnement puissance ¹⁾	•	•	•	•
Sortie à 690 V (kW)	450-630	710–800	450-630	710–800
Sortie à 575 V (HP)	450-650	750–950	450-650	750–950
Protection nominale		•	•	•
IP	IP21/54	IP21/54	IP20 ²⁾	IP20 ²⁾
Type UL	Type 1/12	Type 1/12	Châssis	Châssis
Options matérielles ³⁾		•	•	•
Canal de ventilation arrière en acier inoxydable	0	0	0	0
Plaque de protection contre les pièces nues sous tension	0	0	-	-
Réchauffeur anti-condensation	0	0	-	-
Filtre RFI (classe A1)	-	-	_	-
Safe Torque Off	S	S	S	S
Sans LCP	0	0	0	0
LCP graphique	0	0	0	0
Fusibles	S	S	0	0
Accès au dissipateur de chaleur	0	0	0	0
Hacheur de freinage	0	0	0	0
Bornes régénératrices	0	0	0	0
Bornes de répartition de la charge	-	-	0	0
Fusibles + répartition de la charge	-	-	0	0
Sectionneur	0	0	_	-
Disjoncteurs	-	-	-	-
Contacteurs	-	-	-	-
Alimentation 24 V CC (SMPS, 5 A)	-	-	-	-
Dimensions	•	•		
Hauteur, mm (po)	2 043 (80,4)	2 043 (80,4)	1 578 (62,1)	1 578 (62,1)
Largeur, mm (po)	602 (23,7)	698 (27,5)	506 (19,9)	604 (23,9)
Profondeur, mm (po)	513 (20,2)	513 (20,2)	482 (19,0)	482 (19,0)
Poids, kg (lb)	295 (650)	318 (700)	272 (600)	295 (650)

Tableau 4.6 Variateurs E1h-E4h, 525-690 V

4

¹⁾ Tous les dimensionnements puissance sont pris à surcharge normale. La sortie est mesurée à 690 V (kW) et 575 V (HP).

²⁾ Si les boîtiers sont configurés avec des bornes de répartition de la charge ou régénératrices, ils présentent un niveau de protection IP00 ; dans le cas contraire, ils présentent un niveau de protection IP20.

³⁾ S = standard, O = en option, et un tiret indique que cette option n'est pas disponible.

4.5 Disponibilité du kit

Description du kit ¹⁾	D1h	D2h	D3h	D4h	D5h	D6h	D7h	D8h	E1h	E2h	E3h	E4h
Blindage intempéries NEMA 3R	0	0	_	-	-	_	-	_	-	-	-	-
Protection NEMA 3R pour kit de refroidissement	-	_	0	0	-	_	-	-	-	-	-	-
entrée arrière/sortie arrière												
USB dans la porte	0	0	0	0	0	0	0	0	S	S	-	-
LCP numérique	0	0	0	0	0	0	0	0	0	0	0	0
LCP graphique ²⁾	0	0	0	0	0	0	0	0	0	0	0	0
Câble LCP, 3 m (9 pi)	0	0	0	0	0	0	0	0	0	0	0	0
Kit de montage du LCP numérique	0	0	0	0	0	0	0	0	0	0	0	0
(LCP, fixations, joint et câble)												
Kit de montage du LCP graphique	0	0	0	0	0	0	0	0	0	0	0	0
(LCP, fixations, joint et câble)												
Kit de montage pour tous les LCP	0	0	0	0	0	0	0	0	0	0	0	0
(fixations, joint et câble)												
Blindage secteur	-	_	_	-	-	-	-	_	0	0	-	1
Barre de mise à la terre	-	-	_	-	-	-	-	_	0	0	-	-
Option de plaque d'entrée	0	0	0	0	0	0	0	0	_	_	-	_
Blocs de raccordement	0	0	0	0	0	0	0	0	0	0	0	0
Entrée supérieure des câbles de bus de terrain	0	0	0	0	0	0	0	0	0	0	0	0
Socle	0	0	_	-	0	0	0	0	S	S	-	-
Refroidissement avec entrée en bas et sortie au-	_	_	0	0	-	-	-	-	-	_	0	0
dessus												
Refroidissement avec entrée en bas et sortie à	0	0	0	0	-	-	-	_	-	-	0	0
l'arrière												
Refroidissement avec entrée à l'arrière et sortie au-	_	_	_	-	1	-	-	Ī	-	_	0	0
dessus												
Refroidissement avec entrée et sortie à l'arrière	0	0	0	0	0	0	0	0	0	0	0	0
Refroidissement avec sortie par le dessus	-	_	0	0	-	-	-	_	_	_	_	-
(uniquement)												

Tableau 4.7 Kits disponibles pour les boîtiers D1h-D8h et E1h-E4h

¹⁾ S = standard, O = en option, et un tiret indique que ce kit n'est pas disponible pour ce boîtier. Pour les descriptions de kit et les numéros de pièce, voir chapitre 13.2.6 Références pour les kits D1h–D8h et chapitre 13.2.7 Références pour les kits E1h–E4h.

²⁾ Le LCP graphique est disponible en version standard avec les boîtiers D1h-D8h et E1h-E4h. Si plus d'un LCP graphique est nécessaire, le kit est disponible à la vente.

5 Caractéristiques du produit

5.1 Caractéristiques opérationnelles automatisées

Les caractéristiques opérationnelles automatisées sont actives lorsque le variateur est en fonctionnement. La plupart ne nécessitent aucune programmation ni configuration. Le variateur comporte un large éventail de fonctions de protection intégrées afin de se protéger et de protéger également le moteur qu'il fait fonctionner.

Pour plus d'informations sur l'une des configurations requises, en particulier les paramètres du moteur, consulter le *guide de programmation*.

5.1.1 Protection contre les courts-circuits

Moteur (phase-phase)

Une mesure de courant effectuée sur chacune des trois phases moteur protège le variateur contre les courts-circuits. Un court-circuit entre deux phases de sortie se traduit par un surcourant dans l'onduleur. L'onduleur est désactivé si le courant de court-circuit dépasse la valeur limite (alarme 16, Trip Lock (Alarme verrouillée)).

Côté secteur

Un variateur fonctionnant correctement limite le courant qu'il tire de l'alimentation. Il est néanmoins recommandé d'utiliser des fusibles et/ou des disjoncteurs du côté de l'alimentation comme protection en cas de panne d'un composant interne au variateur (première panne). Des fusibles doivent être installés côté secteur pour la conformité UL.

AVIS!

L'utilisation de fusibles et/ou de disjoncteurs est obligatoire afin d'assurer la conformité aux normes CEI 60364 pour CE et NEC 2009 pour UL.

Résistance de freinage

Le variateur est protégé contre les courts-circuits dans la résistance de freinage.

Répartition de la charge

Pour protéger le bus CC contre les courts-circuits et les variateurs contre la surcharge, installer des fusibles CC en série avec les bornes de répartition de la charge de toutes les unités connectées.

5.1.2 Protection contre la surtension

Surtension générée par le moteur

La tension dans le circuit intermédiaire augmente lorsque le moteur est utilisé comme générateur. Cette situation se présente dans les cas suivants :

- La charge fait tourner le moteur à une fréquence de sortie constante générée par le variateur, ce qui signifie que l'énergie est fournie par la charge.
- Lors de la décélération (arrêt en rampe), si le moment d'inertie est élevé, le frottement est faible et le temps de rampe de décélération est trop court pour que l'énergie se dissipe sous forme de perte dans l'ensemble du système d'entraînement.
- Un réglage incorrect de la compensation du glissement entraîne une tension plus élevée du circuit intermédiaire.
- Force contre-électromotrice FCEM issue du fonctionnement du moteur PM. Si le moteur PM est en roue libre à un régime élevé, la FCEM peut éventuellement dépasser la tolérance de tension maximum du variateur et provoquer des dommages. Pour empêcher cela, la valeur du paramétre 4-19 Max Output Frequency est automatiquement limitée sur la base d'un calcul interne reposant sur la valeur du paramétre 1-40 Back EMF at 1000 RPM, du paramétre 1-25 Motor Nominal Speed et du paramétre 1-39 Motor Poles.

AVIS!

Pour éviter que le moteur dépasse la vitesse limite (par exemple à cause d'une charge entraînante trop importante), équiper le variateur d'une résistance de freinage.

La surtension peut être gérée en utilisant une fonction de freinage (paramétre 2-10 Brake Function) et/ou un contrôle de surtension (paramétre 2-17 Over-voltage Control).

Fonctions de freinage

Raccorder une résistance de freinage pour la dissipation de l'énergie excédentaire. Le raccordement d'une résistance de freinage permet une tension bus CC plus élevée lors du freinage.

Le freinage CA permet d'améliorer le freinage sans utiliser de résistance de freinage. Cette fonction commande une surmagnétisation du moteur lorsque celui-ci sert de générateur. L'augmentation des pertes électriques dans le moteur permet aux fonctions OVC d'augmenter le couple de freinage sans dépasser la limite de surtension.

AVIS!

Le freinage CA n'est pas aussi efficace que le freinage dynamique par résistance.

Contrôle de la surtension (OVC)

En allongeant automatiquement la rampe de décélération, l'OVC réduit le risque d'arrêt du variateur en raison d'une surtension sur le circuit intermédiaire.

AVIS!

L'OVC peut être activé pour un moteur PM dans tous les modes de contrôle, les PM VVC+, Flux OL et Flux CL pour les moteurs PM.

5.1.3 Détection d'absence de phase moteur

La fonction de détection d'absence de phase moteur (paramétre 4-58 Missing Motor Phase Function) est activée par défaut pour éviter l'endommagement du moteur s'il manque une phase moteur. Le réglage par défaut est de 1 000 ms, mais il peut être ajusté pour une détection plus rapide.

5.1.4 Détection de déséquilibre de tension d'alimentation

Une exploitation dans des conditions de déséquilibre important de la tension d'alimentation réduit la durée de vie du moteur et du variateur. Les conditions sont considérées comme sévères si le moteur fonctionne continuellement à hauteur de la charge nominale. Le réglage par défaut arrête le variateur en cas de déséquilibre de la tension d'alimentation (paramétre 14-12 Response to Mains Imbalance).

5.1.5 Commutation sur la sortie

Il est permis d'ajouter un commutateur à la sortie entre le moteur et le variateur, mais cela peut entraîner l'affichage de messages d'erreur. Danfoss ne recommande pas d'utiliser cette fonction sur des variateurs 525-690 V reliés à un réseau électrique IT.

5.1.6 Protection surcharge

Limite de couple

La caractéristique de limite de couple protège le moteur contre les surcharges indépendamment de la vitesse. La limite de couple est contrôlée au paramétre 4-16 Torque Limit Motor Mode et au paramétre 4-17 Torque Limit Generator Mode. Le temps avant que l'avertissement de limite de couple ne se déclenche est contrôlé au paramétre 14-25 Trip Delay at Torque Limit.

Limite de courant

La limite de courant est contrôlée au paramétre 4-18 Current Limit et le temps avant que le variateur ne s'arrête est contrôlé au paramétre 14-24 Trip Delay at Current Limit.

Vitesse limite

Vitesse limite minimale : le *Paramétre 4-11 Motor Speed Low Limit [RPM]* ou le *paramétre 4-12 Motor Speed Low Limit [Hz]* limite la plage de vitesses d'exploitation minimum du variateur.

Vitesse limite maximale : le *Paramétre 4-13 Motor Speed High Limit [RPM]* ou le *paramétre 4-19 Max Output Frequency* limite la fréquence de sortie maximum que le variateur peut fournir.

Relais thermique électronique (ETR)

ETR est une caractéristique électronique qui simule un relais bimétallique en s'appuyant sur des mesures internes. La courbe caractéristique est indiquée sur l'Illustration 5.1.

Limite tension

L'onduleur s'arrête afin de protéger les transistors et les condensateurs du circuit intermédiaire quand un certain niveau de tension programmé en dur est atteint.

Surtempérature

Le variateur comporte des capteurs de température intégrés et réagit immédiatement aux valeurs critiques via les limites programmées en dur.

5.1.7 Protection rotor verrouillé

Dans certaines situations, le rotor se verrouille suite à une charge excessive ou à d'autres facteurs. Le rotor verrouillé ne présente pas une capacité de refroidissement suffisante, ce qui peut surchauffer le bobinage du moteur. Le variateur est capable de détecter la situation de rotor verrouillé avec un contrôle de flux PM en boucle ouverte et un contrôle PM VVC+ (paramétre 30-22 Locked Rotor Detection).

5.1.8 Déclassement automatique

Le variateur vérifie constamment les niveaux critiques suivants :

- température trop élevée sur la carte de commande ou le dissipateur de chaleur;
- charge moteur élevée ;
- haute tension du circuit intermédiaire ;
- vitesse du moteur faible.

En réponse à un niveau critique, le variateur ajuste la fréquence de commutation. Pour des températures internes élevées, ainsi que pour une vitesse du moteur faible, le variateur peut également forcer le modèle PWM sur SFAVM.

AVIS!

Le déclassement automatique est différent lorsque le paramétre 14-55 Output Filter est réglé sur [2] Filtre sinus fixe.

5.1.9 Optimisation automatique de l'énergie

L'optimisation automatique de l'énergie (AEO) s'adresse au variateur pour surveiller la charge sur le moteur en continu et ajuster la tension de sortie afin de maximiser le rendement. En charge légère, la tension est réduite et le courant du moteur est minimisé. Le moteur profite :

- d'un meilleur rendement ;
- d'un chauffage réduit ;
- d'un fonctionnement plus silencieux.

Il n'est pas nécessaire de sélectionner une courbe V/Hz car le variateur ajuste automatiquement la tension du moteur.

5.1.10 Modulation automatique de la fréquence de commutation

Le variateur génère de courtes impulsions électriques afin de former un modèle d'onde CA. La fréquence de commutation correspond au rythme de ces impulsions. Une fréquence de commutation faible (rythme faible) provoque du bruit dans le moteur, il est donc préférable d'opter pour une fréquence de commutation plus élevée. Une fréquence de commutation élevée génère toutefois de la chaleur dans le variateur, ce qui peut limiter la quantité de courant disponible pour le moteur.

La modulation automatique de la fréquence de commutation régule ces conditions automatiquement pour fournir la plus haute fréquence de commutation sans surchauffe du variateur. En fournissant une fréquence de commutation régulée élevée, elle réduit le son du moteur à basse vitesse, lorsque le contrôle du bruit audible est critique et produit une puissance de sortie totale vers le moteur lorsque la demande le requiert.

5.1.11 Déclassement automatique pour fréquence de commutation élevée

Le variateur a été conçu pour un fonctionnement continu à pleine charge à des fréquences de commutation comprises entre 1,5 et 2 kHz pour 380-480 V, et 1 et 1,5 kHz pour 525-690 V. La plage de fréquences dépend de la puissance et de la tension nominale. Une fréquence de commutation supérieure à la plage maximale autorisée augmente la chaleur dans le variateur et requiert un déclassement du courant de sortie.

Le variateur comporte une fonction automatique : le contrôle de la fréquence de commutation dépendant de la charge. Cette fonction permet au moteur de profiter de la fréquence de commutation la plus élevée possible permise par la charge.

5.1.12 Performance de fluctuation de la puissance

Le variateur supporte les fluctuations du secteur telles que les :

- transitoires;
- chutes de courant momentanées ;
- brèves chutes de tension ;
- surtensions.

Le variateur compense automatiquement les tensions d'entrée de ± 10 % de la valeur nominale afin de fournir une tension nominale du moteur et un couple à plein régime. Avec le redémarrage automatique sélectionné, le variateur se met sous tension après le déclenchement de la tension. Avec le démarrage à la volée, le variateur synchronise la rotation du moteur avant le démarrage.

5.1.13 Atténuation des résonances

L'atténuation des résonances élimine le bruit de résonance du moteur haute fréquence. L'atténuation des fréquences à sélection manuelle ou automatique est disponible.

5.1.14 Ventilateurs à température contrôlée

Des capteurs placés dans le variateur régulent l'exploitation des ventilateurs de refroidissement internes. Souvent, les ventilateurs de refroidissement ne fonctionnent pas à faible charge ou en mode veille ou en pause. Ces capteurs réduisent le bruit, augmentent l'efficacité et prolongent la durée de vie du ventilateur.

5.1.15 Conformité CEM

Les interférences électromagnétiques (EMI) et les interférences radio-électriques (RFI) sont des perturbations qui peuvent affecter un circuit électrique à cause d'une induction ou d'un rayonnement électromagnétique à partir d'une source externe. Le variateur a été conçu pour être conforme à la norme sur les produits CEM pour les variateurs CEI 61-800-3 ainsi qu'à la norme européenne EN 55011. Les câbles du moteur doivent être blindés et correctement terminés pour respecter les niveaux d'émission de la norme EN 55011. Pour plus d'informations concernant la performance CEM, consulter le *chapitre 10.14.1 Résultats des essais CEM*.

5.1.16 Isolation galvanique des bornes de commande

Toutes les bornes de commande et de relais de sortie sont galvaniquement isolées de l'alimentation secteur, ce qui protège entièrement le circuit de commande du courant d'entrée. Les bornes de relais de sortie ont besoin de leur propre mise à la terre. Cette isolation est conforme aux exigences strictes de tension extrêmement basse (PELV) pour l'isolation.

Les composants de l'isolation galvanique sont les suivants :

- l'alimentation, notamment l'isolation du signal ;
- le pilotage des IGBT, des transformateurs d'impulsions et des coupleurs optoélectroniques;
- les transducteurs de courant de sortie à effet Hall.

5.2 Fonctions de protection de l'application

Les fonctions personnalisées des applications sont les fonctions les plus couramment programmées sur le variateur pour une meilleure performance du système. Elles nécessitent une programmation ou une configuration minimum. Consulter le *guide de programmation* pour obtenir des instructions sur l'activation de ces fonctions.

5.2.1 Adaptation automatique au moteur

L'adaptation automatique au moteur (AMA) est une procédure de test automatisée qui mesure les caractéristiques électriques du moteur. L'AMA fournit un modèle électronique précis du moteur, ce qui permet au variateur de calculer la performance optimale et le rendement. Le recours à la procédure AMA maximise par ailleurs la fonction d'optimisation automatique de l'énergie du variateur. L'AMA est réalisée sans rotation du moteur et sans désaccouplage de la charge du moteur.

5.2.2 Contrôleur intégré du PID

Le contrôleur intégré à action proportionnelle, intégrale, dérivée (PID) élimine le besoin de dispositifs de contrôle auxiliaires. Le contrôleur du PID maintient un contrôle constant des systèmes en boucle fermée lorsque la pression, le débit, la température doivent être régulés ou toute autre configuration système doit être conservée.

Le variateur peut utiliser deux signaux de retour provenant de deux dispositifs différents, ce qui permet de réguler le système en fonction de différentes exigences de signal de retour. Le variateur prend des décisions de contrôle en comparant les deux signaux afin d'optimiser la performance du système.

5.2.3 Protection thermique du moteur

La protection thermique du moteur est disponible :

- par détection directe de la température à l'aide
 - d'un capteur PTC ou KTY dans les bobinages du moteur et connecté à une entrée analogique ou digitale standard;
 - d'un PT100 ou PT1000 dans les bobinages et paliers du moteur, connecté à la carte VLT® Sensor Input Card MCB 114;
 - d'une entrée de thermistance PTC sur la VLT® PTC Thermistor Card MCB 112 (homologuée ATEX) ;
- par un thermocontact mécanique (type Klixon) sur une entrée digitale;
- par relais thermique électronique intégré (ETR).

L'ETR calcule la température du moteur en mesurant le courant, la fréquence et le temps de fonctionnement. Le variateur affiche la charge thermique sur le moteur en pourcentage et peut émettre un avertissement à une consigne de surcharge programmable.

Des options programmables en cas de surcharge permettent au variateur d'arrêter le moteur, de réduire la sortie ou d'ignorer la condition. Même à faible vitesse, le variateur satisfait aux normes sur les surcharges de moteurs électroniques l2t de classe 20.

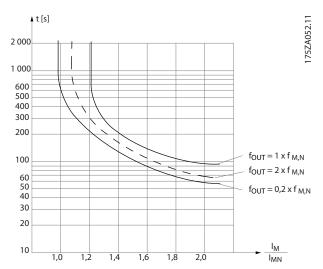


Illustration 5.1 Caractéristiques ETR

L'axe des abscisses indique le rapport entre I_{moteur} et I_{moteur} nominale. L'axe des ordonnées représente le temps en secondes avant que l'ETR ne se déclenche et fasse disjoncter le variateur. Ces courbes montrent la vitesse nominale caractéristique à deux fois la vitesse nominale et à 0,2 fois la vitesse nominale.

À vitesse plus faible, l'ETR se déclenche à une chaleur inférieure en raison du refroidissement moindre du moteur.

De cette façon, le moteur est protégé contre les surchauffes même à une vitesse faible. La caractéristique ETR calcule la température du moteur en fonction du courant et de la vitesse réels. La température calculée est visible en tant que paramètre d'affichage au paramétre 16-18 Motor Thermal.

Une version spéciale de l'ETR est également disponible pour les moteurs Ex-e dans les zones ATEX. Cette fonction permet de saisir une courbe spécifique pour protéger le moteur Ex-e. Consulter le guide de programmation pour obtenir des instructions concernant la configuration.

5.2.4 Protection thermique du moteur pour moteurs Ex-e

Le variateur est équipé d'une fonction de surveillance thermique ETR ATEX pour l'exploitation de moteurs Ex-e conformes à la norme EN-60079-7. Associée à un dispositif de surveillance PTC agréé ATEX tel que l'option VLT® PTC Thermistor Card MCB 112 ou un dispositif externe, l'installation n'a pas besoin d'homologation individuelle par un organisme agréé.

La fonction de surveillance thermique ETR ATEX permet d'utiliser un moteur Ex-e au lieu d'un moteur Ex-d plus cher, plus grand et plus lourd. La fonction s'assure que le variateur limite le courant du moteur pour empêcher toute surchauffe.

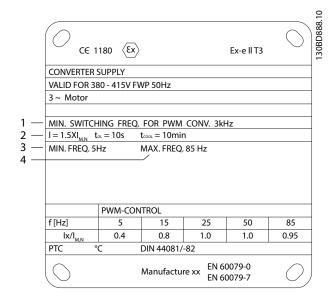
Exigences liées au moteur Ex-e

- S'assurer que le moteur Ex-e est homologué pour une exploitation dans des zones dangereuses (zone ATEX 1/21, zone ATEX 2/22) avec des variateurs. Le moteur doit être certifié pour la zone dangereuse spécifique.
- Installer le moteur Ex-e dans la zone 1/21 ou 2/22 de la zone dangereuse, selon l'homologation du moteur.

AVIS!

Installer le variateur à l'extérieur de la zone dangereuse.

- S'assurer que le moteur Ex-e est équipé d'un dispositif de protection du moteur contre la surcharge conforme aux directives ATEX. Ce dispositif surveille la température dans les bobinages du moteur. En cas de niveau de température critique ou de dysfonctionnement, le dispositif coupe le moteur.
 - L'option VLT® PTC Thermistor Card MCB 112 permet de surveiller la température du moteur conformément aux directives ATEX. Il est nécessaire que le variateur soit équipé de 3-6 thermistances PTC en


- série, conformément à DIN 44081 ou 44082
- Il est également possible d'utiliser un dispositif de protection PTC externe, agréé ATEX.
- Un filtre sinus est requis lorsque
 - des câbles longs (pics de tension) ou une tension secteur accrue produisent des tensions supérieures à la tension maximum admissible au niveau des bornes du moteur;
 - la fréquence de commutation minimale du variateur ne satisfait pas aux exigences du fabricant du moteur. La fréquence de commutation minimale du variateur est indiquée comme valeur par défaut dans le paramétre 14-01 Switching Frequency.

Compatibilité du moteur et du variateur

Pour les moteurs certifiés conformes à EN-60079-7, une liste de données comprenant les limites et règles est fournie par le fabricant du moteur sous forme de fiche technique, ou sur la plaque signalétique du moteur. Lors de la planification, de l'installation, de la mise en service, de l'exploitation et de l'entretien, respecter les limites et règles fournies par le fabricant en ce qui concerne :

- Fréquence de commutation minimale.
- Courant maximal.
- Fréquence moteur minimale.
- Fréquence moteur maximale.

L'Illustration 5.2 montre l'emplacement des exigences sur la plaque signalétique du moteur.

1	Fréquence de commutation minimale
2	Courant maximal
3	Fréquence moteur minimale
4	Fréquence moteur maximale

Illustration 5.2 Plaque signalétique du moteur indiquant les exigences du variateur

Au moment de choisir un variateur et un moteur, Danfoss précise les exigences supplémentaires suivantes pour garantir une protection thermique adéquate du moteur :

- Ne pas dépasser le rapport maximal autorisé entre la taille du variateur et la taille du moteur.
 La valeur caractéristique est I_{VLT, n} ≤ 2 x I_{m,n}
- Tenir compte de toutes les chutes de tension entre le variateur et le moteur. Si le moteur tourne à une tension inférieure à celle indiquée dans les caractéristiques U/f, le courant peut augmenter, ce qui déclenche une alarme.

Pour de plus amples informations, voir l'exemple d'application dans le *chapitre 12 Exemples d'applications*.

5.2.5 Chute de tension secteur

Lors d'une chute de la tension secteur, le variateur continue de fonctionner jusqu'à ce que la tension du circuit intermédiaire chute en dessous du seuil d'arrêt minimal. Ce seuil est généralement inférieur de 15 % à la tension nominale d'alimentation la plus basse. La tension secteur disponible avant la panne et la charge du moteur déterminent le temps qui s'écoule avant l'arrêt en roue libre du variateur.

Le variateur peut être configuré (*paramétre 14-10 Mains Failure*) sur différents types de comportement pendant les chutes de tension secteur :

- alarme verrouillée lorsque le circuit intermédiaire est épuisé;
- roue libre avec démarrage à la volée lors du retour du secteur (paramétre 1-73 Flying Start);
- sauvegarde cinétique ;
- décélération contrôlée.

Démarrage à la volée

Cette sélection permet de rattraper un moteur, à la volée, p. ex. à cause d'une chute de tension secteur. Cette option est importante pour les centrifugeuses et les ventilateurs.

Sauvegarde cinétique

Cette sélection permet au variateur de fonctionner tant qu'il reste de l'énergie dans le système. Pour les pannes courtes, le fonctionnement est rétabli dès le retour du courant, sans arrêter l'application ou sans perdre à aucun moment le contrôle. Plusieurs variantes de sauvegarde cinétique peuvent être sélectionnées.

Configurer le comportement du variateur en cas de chute de la tension secteur, au *paramétre 14-10 Mains Failure* et au *paramétre 1-73 Flying Start*.

5.2.6 Redémarrage automatique

Le variateur peut être programmé pour redémarrer automatiquement le moteur après un déclenchement mineur tel qu'une perte de puissance momentanée ou une fluctuation. Cette fonction élimine le besoin de réinitialisation manuelle et améliore l'exploitation automatisée de systèmes contrôlés à distance. Le nombre de tentatives de redémarrage et le temps écoulé entre les tentatives peuvent être limités.

5.2.7 Couple complet à vitesse réduite

Le variateur suit une courbe V/Hz variable pour fournir un couple moteur complet, même à vitesse réduite. Le couple de sortie total peut correspondre à la vitesse de fonctionnement maximum du moteur. Ce variateur est différent des variateurs à couple variable et à couple constant. Les variateurs à couple variable fournissent un couple moteur réduit à basse vitesse tandis que les variateurs à couple constant génèrent une tension, une chaleur et un bruit du moteur excédentaires en dessous de la pleine vitesse.

5.2.8 Bipasse de fréquence

Sur certaines applications, le système peut présenter des vitesses opérationnelles qui créent une résonance mécanique. Cela génère un bruit excessif et endommage certainement les composants mécaniques du système. Le variateur est doté de 4 largeurs de bande de fréquence de bipasse programmables. Ces dernières permettent au moteur de dépasser les vitesses qui induisent une résonance du système.

5.2.9 Préchauffage du moteur

Pour préchauffer un moteur dans un environnement froid ou humide, une petite quantité de courant CC peut être chargée en continu dans le moteur pour le protéger de la condensation et des effets d'un démarrage à froid. Cela permet d'éliminer la nécessité d'un appareil individuel de chauffage.

5.2.10 Process programmables

Le variateur possède 4 process qui peuvent être programmés indépendamment les uns des autres. Avec le multi process, il est possible de basculer entre les fonctions programmées de façon indépendante et activées par des entrées digitales ou une commande série. Des process indépendants sont utilisés par exemple pour modifier des références, pour un fonctionnement jour/nuit ou été/hiver ou pour contrôler plusieurs moteurs. Le LCP affiche le process actif.

Les données de process peuvent être copiées d'un variateur à un autre en téléchargeant les informations depuis le LCP amovible.

5.2.11 Contrôleur logique avancé (SLC)

Le contrôleur logique avancé (SLC) est une séquence d'actions définies par l'utilisateur (voir paramétre 13-52 SL Controller Action [x]) exécutées par le SLC lorsque l'événement associé défini par l'utilisateur (voir paramétre 13-51 SL Controller Event [x]) est évalué comme étant VRAI par le SLC.

La condition d'un événement peut être un état particulier ou le fait qu'une sortie provenant d'une règle logique ou d'un opérande comparateur devienne VRAI. Cela entraîne une action associée comme indiqué sur l'Illustration 5.3.

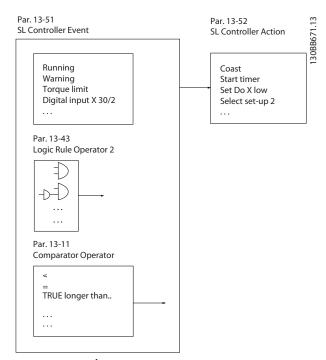


Illustration 5.3 Événement SLC et action

Les événements et actions sont chacun numérotés et liés par paires (états), ce qui signifie que lorsqu'un événement [0] est rempli (atteint la valeur VRAI), l'action [0] est exécutée. Après l'exécution de la 1^{re} action, les conditions de l'événement suivant sont évaluées. Si l'événement est évalué comme étant vrai, l'action correspondante est alors exécutée. Un seul événement est évalué à chaque fois. Si un événement est évalué comme étant FAUX, rien ne se passe dans le SLC pendant l'intervalle de balayage en cours et aucun autre événement n'est évalué. Lorsque le SLC démarre, il évalue uniquement l'événement [0] à chaque intervalle de balayage. Ce n'est que lorsque l'événement [0] est évalué comme étant vrai que le SLC exécute l'action [0] et commence l'évaluation de l'événement suivant. Il est possible de programmer de 1 à 20 événements et actions.

Lorsque le dernier événement/la dernière action a été exécuté(e), la séquence recommence à partir de l'événement [0]/action [0]. L'Illustration 5.4 donne un exemple avec 4 événements/actions :

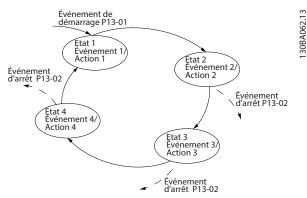


Illustration 5.4 Ordre d'exécution lorsque 4 événements/ actions sont programmés

Comparateurs

Les comparateurs sont utilisés pour comparer des variables continues (c.-à-d. fréquence de sortie, courant de sortie, entrée analogique, etc.) à des valeurs prédéfinies fixes.

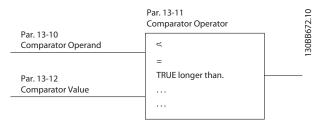


Illustration 5.5 Comparateurs

Règles logiques

Associer jusqu'à 3 entrées booléennes (entrées VRAI/FAUX) à partir des temporisateurs, comparateurs, entrées digitales, bits d'état et événements à l'aide des opérateurs logiques ET, OU, PAS.

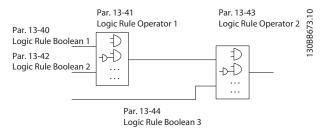


Illustration 5.6 Règles logiques

5.2.12 Safe Torque Off

La fonction Safe Torque Off (STO) est utilisée pour arrêter le variateur dans des situations d'arrêt d'urgence. Le variateur peut utiliser la fonction STO avec des moteurs asynchrones, synchrones et à magnétisation permanente. Pour plus d'informations sur Safe Torque Off, y compris sur l'installation et la mise en service, se reporter au manuel d'utilisation de la fonction Safe Torque Off de la série VLT® FC.

Conditions de responsabilité

Le client est chargé de s'assurer que le personnel sait comment installer et exploiter la fonction Safe Torque Off en :

- ayant lu et compris les réglementations de sécurité concernant la santé et la sécurité, et la prévention des accidents;
- ayant compris les directives générales et de sécurité données dans le manuel d'utilisation de la fonction Safe Torque Off de la série VLT® FC;
- ayant une bonne connaissance des normes générales et de sécurité relatives à l'application spécifique.

5.3 Fonctions spécifiques du VLT® AQUA Drive FC 202

Le variateur VLT® AQUA Drive FC 202 est dédié aux applications d'eau et d'eaux usées. La large gamme de caractéristiques standard et optionnelles inclut SmartStart et le menu rapide, en particulier pour les applications liées à l'eau et aux eaux usées :

• Contrôle en cascade

Le contrôle en cascade de base est intégré en standard, avec une capacité pouvant atteindre trois pompes. Le contrôle en cascade commande la vitesse d'une seule pompe dans un système à plusieurs pompes. Il s'agit d'une solution économique pour les groupes surpresseurs. Les systèmes comportant plusieurs pompes à vitesse variable requièrent VLT® Extended Cascade Controller MCO 101 ou VLT® Advanced Cascade Controller MCO 102.

• Alternance moteur

La fonctionnalité d'alternance du moteur convient aux applications avec deux moteurs ou deux pompes partageant un variateur.

Compensation du débit

La compensation du débit adapte la consigne au débit, ce qui permet d'installer le capteur de pression près de la pompe.

• Détection de fonctionnement à sec

Cette fonction empêche l'endommagement de la pompe en évitant le fonctionnement à sec et la surchauffe de la pompe.

• Détection de fin de courbe

La fonction détecte lorsque la pompe tourne à vitesse maximale et que la consigne ne peut pas être atteinte pendant une période définie par l'utilisateur.

Décolmatage

Cette caractéristique de nettoyage de prévention ou de réaction a été conçue pour les pompes sur des applications liées aux eaux usées. Voir le chapitre 5.6 Vue d'ensemble du décolmatage pour des précisions.

• Rampes initiale/finale

La programmation des temps de rampe courts à la vitesse minimale protège les paliers et assure le refroidissement suffisant des applications avec pompes submersibles.

• Protection par clapet anti-retour

Une rampe de décélération longue protège les clapets anti-retour et empêche les coups de bélier.

STO

STO active la fonction Safe Torque Off (roue libre) en cas de situation critique.

• Détection de débit faible

Cette caractéristique détecte des conditions d'absence de débit et de débit faible du système.

Mode veille

Le mode veille permet d'économiser de l'énergie en arrêtant la pompe en l'absence de demande.

• Mode de remplissage des tuyaux

Le mode de remplissage des tuyaux comprend des fonctionnalités qui permettent de remplir doucement les tuyaux et d'éviter les coups de bélier. Cette caractéristique fournit différents modes pour les tuyaux horizontaux et verticaux.

• Horloge en temps réel

• Contrôleur logique avancé (SLC)

SLC comprend la programmation d'une séquence composée d'événements et d'actions. SLC offre une large gamme de fonctions de PLC utilisant des comparateurs, des règles logiques et des temporisations.

• Pré/post-lubrification

Voir le chapitre 5.7 Vue d'ensemble de la pré/postlubrification pour des précisions.

• Confirmation du débit

Voir chapitre 5.8 Vue d'ensemble de la confirmation du débit pour des précisions.

Surveillance de la vitesse minimum avancée des pompes submersibles

Voir le chapitre 5.9 Vue d'ensemble de la surveillance de la vitesse minimum avancée pour des précisions.

• Maintenance préventive

La maintenance préventive permet de programmer les intervalles d'entretien dans le variateur.

5.3.1 Configuration facile

SmartStart

Avec l'assistant SmartStart, il est désormais plus facile et plus rentable de mettre le variateur en service. SmartStart est activé à la première mise sous tension ou après une réinitialisation à l'usine et guide les utilisateurs dans une série d'étapes faciles afin de garantir le contrôle correct et le plus efficace possible du moteur. Le SmartStart peut être démarré à tout moment directement via le menu rapide.

- Une seule pompe/moteur en boucle ouverte ou fermée
- Alternance moteur : lorsque deux moteurs partagent un variateur.
- Contrôle en cascade de base : commande de vitesse d'une seule pompe dans un système à plusieurs pompes.
- Maître-esclave: permet de commander jusqu'à huit variateurs et pompes pour garantir un fonctionnement régulier de l'ensemble du système de pompage.

Menu rapide

L'option Eau et pompes du menu rapide offre un accès rapide aux caractéristiques liées à l'eau et aux pompes les plus courantes du VLT® AQUA Drive FC 202 :

- Rampes spéciales (rampe initiale/finale, rampe clapet anti-retour).
- Mode veille
- Décolmatage
- Détection de fonctionnement à sec.
- Détection de fin de courbe.
- Compensation du débit.
- Mode de remplissage des tuyaux pour les systèmes de tuyaux horizontaux, verticaux et mixtes.
- Performance de contrôle.
- Surveillance de vitesse minimale.

5.4 Vue d'ensemble du contrôle en cascade

Les options du contrôleur de cascade augmentent le nombre de relais disponibles. Lorsque l'une des options est installée, les fonctions du contrôleur de cascade sont gérées via le panneau de commande.

VLT® Extended Cascade Controller MCO 101 et VLT® Advanced Cascade Controller MCO 102 sont des options qui étendent le nombre de pompes prises en charge et les fonctionnalités du contrôleur de cascade intégré dans le VLT® AQUA Drive FC 202.

Les options de contrôle en cascade suivantes sont disponibles :

- Contrôleur de cascade de base intégré (contrôleur de cascade standard).
- MCO 101 (contrôleur de cascade étendu).
- MCO 102 (contrôleur de cascade avancé).

Pour plus d'informations, se reporter au chapitre 12 Exemples d'applications et au guide de programmation.

Le contrôleur de cascade étendu peut être utilisé dans deux modes différents :

- Avec les fonctions étendues contrôlées par le groupe de paramètres 27-** Cascade CTL Option (Option ctl. casc.).
- Étend le nombre de relais disponibles du contrôleur de cascade de base contrôlés par le groupe de paramètres 25-** Contrôleur cascade.

Le MCO 101 permet d'utiliser cinq relais maximum pour le contrôle en cascade. Le MCO 102 permet de contrôler un total de huit pompes. Les options peuvent permettre d'alterner la pompe principale avec deux relais par pompe.

AVIS!

Si le MCO 102 est installé, le VLT® Relay Card MCB 105 peut faire passer le nombre de relais à 13.

Application

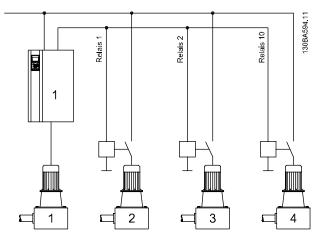
Le contrôle en cascade est un système de contrôle courant utilisé pour commander des pompes ou des ventilateurs en parallèle, de façon efficace d'un point de vue énergétique.

L'option de contrôleur de cascade permet de commander plusieurs pompes configurées en parallèle :

- En activant ou en désactivant automatiquement les pompes individuelles.
- En contrôlant la vitesse des pompes.

Grâce aux contrôleurs de cascade, les pompes individuelles sont automatiquement activées (démarrées) et désactivées (arrêtées) selon les besoins, et ce, afin de maintenir le débit ou la pression nécessaire au système. La vitesse des pompes raccordées au VLT® AQUA Drive FC 202 est également commandée de façon à fournir une plage continue de puissance système.

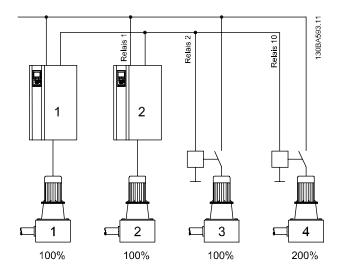
Usage prévu


Les options du contrôleur de cascade ont été conçues pour des applications de pompage. Il est toutefois également possible d'utiliser les contrôleurs de cascade pour toute application requérant plusieurs moteurs configurés en parallèle.

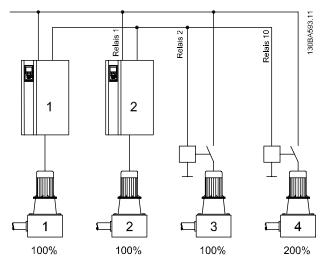
Principe de fonctionnement

Le logiciel du contrôleur de cascade fonctionne à partir d'un seul variateur avec l'option de contrôleur de cascade. Il commande un ensemble de pompes, chacune commandée par un variateur ou raccordée à un contacteur ou un démarreur progressif.

Des variateurs supplémentaires dans le système (variateurs esclaves) n'ont pas besoin de carte option de contrôleur de cascade. Ils sont exploités en mode boucle ouverte et reçoivent leur référence de vitesse à partir du variateur maître. Les pompes raccordées aux variateurs esclaves sont appelées pompes à vitesse variable.


Les pompes raccordées au secteur via un contacteur ou un démarreur progressif sont appelées pompes à vitesse fixe. Chaque pompe à vitesse fixe ou variable est commandée par un relais du variateur maître. Les options du contrôleur de cascade peuvent commander un mélange de pompes à vitesse fixe et à vitesse variable.

Intégré	1 VSP + 2 FSP
	groupe de paramètres 25-** Contrôleur
	cascade
VLT® Extended	1 VSP + 5 FSP
Cascade Controller	groupe de paramètres 25-** Contrôleur
MCO 101	cascade
VLT® Advanced	1 VSP + 8 FSP
Cascade Controller	groupe de paramètres 25-** Contrôleur
MCO 102	cascade


Illustration 5.7 Vue d'ensemble de l'application

Intégré	_
VLT® Extended	1-6 VSP + 1-5 FSP (6 pompes maximum)
Cascade Controller	groupe de paramètres 27-** Cascade CTL
MCO 101	Option (Option ctl. casc.)
VLT® Advanced	1-8 VSP + 1-7 FSP (8 pompes maximum)
Cascade Controller	groupe de paramètres 27-** Cascade CTL
MCO 102	Option (Option ctl. casc.)

Illustration 5.8 Vue d'ensemble de l'application

Intégré	_
VLT® Extended	6 VSP
Cascade Controller	groupe de paramètres 27-** Cascade CTL
MCO 101	Option (Option ctl. casc.)
VLT® Advanced	8 VSP
Cascade Controller	groupe de paramètres 27-** Cascade CTL
MCO 102	Option (Option ctl. casc.)

Illustration 5.9 Vue d'ensemble de l'application

VSP = Pompe à vitesse variable (directement connectée au variateur)

FSP = Pompe à vitesse fixe (le moteur peut être connecté via un contacteur, un démarreur progressif ou un démarreur étoile/triangle)

5.5 Vue d'ensemble du contrôleur de cascade de base

Le contrôleur de cascade de base est utilisé pour les applications de pompe où une certaine pression (hauteur) ou un certain niveau doit être maintenu(e) au-dessus d'une large plage dynamique. Faire fonctionner une grosse pompe à vitesse variable sur une plage étendue n'est pas une solution idéale en raison de la faible efficacité de la pompe à faible vitesse. Dans la pratique, la limite pour la pompe est de 25 % de la vitesse nominale à pleine charge.

Avec le contrôleur de cascade de base, le variateur commande un moteur (principal) à vitesse variable en tant que pompe à vitesse variable et permet le démarrage et l'arrêt de 2 pompes à vitesse constante supplémentaires. Raccorder les pompes à vitesse constante supplémentaires directement au secteur ou via des démarreurs progressifs. Le changement de vitesse de la pompe initiale fournit une commande de vitesse variable au système. La vitesse variable maintient la pression constante, ce qui entraîne une réduction de la fatigue du système et un fonctionnement plus silencieux des systèmes de pompage.

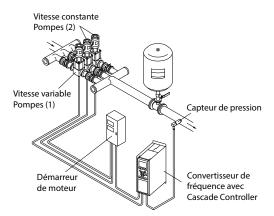


Illustration 5.10 Contrôleur de cascade de base

Pompe principale fixe

Les moteurs doivent avoir les mêmes dimensions. Le contrôleur de cascade de base permet au variateur de contrôler jusqu'à 3 pompes de taille égale à l'aide des 2 relais intégrés au variateur. Lorsque la pompe variable (principale) est raccordée directement au variateur, les 2 relais intégrés contrôlent les 2 autres pompes. Lorsque les alternances de pompe principale sont activées, les pompes sont raccordées aux relais intégrés et le variateur peut faire fonctionner 2 pompes.

130BA362.10

Alternance de la pompe principale

Les moteurs doivent avoir les mêmes dimensions. Cette fonction permet de faire fonctionner le variateur par cycle entre les pompes du système (max. 2 pompes). Dans cette exploitation, le temps de fonctionnement entre les pompes est compensé par la réduction des besoins de maintenance des pompes et par l'augmentation de la fiabilité et de la durée de vie du système. L'alternance de la pompe principale peut avoir lieu sur un signal de commande ou au démarrage (en ajoutant une autre pompe).

L'ordre peut être une alternance manuelle ou un signal d'événement d'alternance. Si l'événement d'alternance est sélectionné, l'alternance de la pompe principale a lieu chaque fois que l'événement se produit. Les sélections incluent :

- Lorsqu'une temporisation d'alternance expire.
- À une heure prédéfinie du jour.
- Lorsque la pompe principale passe en mode veille.

La charge réelle du système détermine le déclenchement.

Un paramètre séparé n'autorise l'alternance que si la capacité totale nécessaire est > 50 %. La capacité totale des pompes est déterminée par la capacité de la pompe principale plus celles des pompes à vitesse fixe.

Gestion de la largeur de bande

Dans les systèmes à contrôle en cascade, afin d'éviter une commutation fréquente des pompes à vitesse fixe, la pression du système voulue est maintenue dans une largeur de bande plutôt qu'à un niveau constant. La largeur de bande de déclenchement offre la largeur de bande nécessaire à l'exploitation. Lorsqu'une modification importante et rapide intervient dans la pression du système, la largeur de bande prioritaire se substitue à la largeur de bande de déclenchement pour éviter une réponse immédiate à un changement de pression de courte durée. Un retard de dépassement de largeur de bande peut être programmé pour empêcher le déclenchement jusqu'à ce que la pression du système se soit stabilisée et qu'un contrôle normal soit établi.

Lorsque le contrôleur de cascade est activé et que le variateur émet une alarme d'arrêt, la hauteur du système est maintenue par le déclenchement et l'arrêt des pompes à vitesse fixe. Pour éviter des déclenchements et des arrêts fréquents et minimiser les fluctuations de pression, une largeur de bande à vitesse fixe plus large est utilisée au lieu de la largeur de bande de déclenchement.

5.5.1.1 Démarrage de la pompe avec alternance de la pompe principale

Avec l'alternance de la pompe principale activée, un maximum de deux pompes peut être contrôlé. Sur un ordre d'alternance, le PID s'arrête, la pompe principale décélère jusqu'à la fréquence minimale (f_{min}) et, après une temporisation, accélère jusqu'à la fréquence maximale

(f_{max}). Lorsque la vitesse de la pompe principale atteint la fréquence d'arrêt, la pompe à vitesse fixe s'arrête. La pompe principale continue à accélérer puis décélère jusqu'à l'arrêt et les deux relais s'arrêtent.

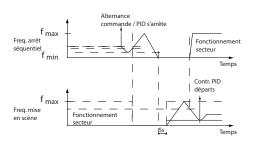


Illustration 5.11 Alternance de la pompe principale

Après un retard, le relais de la pompe à vitesse fixe démarre et cette pompe devient la nouvelle pompe principale. La nouvelle pompe principale accélère jusqu'à la vitesse maximale puis décélère jusqu'à la vitesse minimale. Lors de la rampe de décélération et lorsqu'elle atteint la fréquence de démarrage, l'ancienne pompe principale démarre maintenant sur le secteur comme nouvelle pompe à vitesse fixe.

Si la pompe principale a fonctionné à la fréquence minimale (f_{min}) pendant une durée programmée, avec une pompe à vitesse fixe en fonctionnement, la pompe principale contribue peu au système. Lorsque la valeur programmée de la temporisation expire, la pompe principale est enlevée, évitant des problèmes de réchauffement d'eau.

5.5.1.2 État et fonctionnement du système

Si la pompe principale passe en mode veille, la fonction est affichée sur le LCP. Il est possible d'alterner la pompe principale en mode veille.

Lorsque le contrôleur de cascade est activé, le LCP affiche l'état d'exploitation de chaque pompe et du contrôleur de cascade. Les informations affichées comprennent :

- L'état des pompes est un affichage de l'état des relais affectés à chaque pompe. L'affichage montre les pompes désactivées, éteintes, en fonctionnement sur le variateur ou sur le secteur/ démarreur de moteur.
- L'état cascade est un affichage de l'état du contrôleur de cascade. L'affichage indique les informations suivantes :
 - Le contrôleur de cascade est désactivé.
 - Toutes les pompes sont éteintes.
 - Une urgence a arrêté toutes les pompes.
 - Toutes les pompes fonctionnent.

- Les pompes à vitesse fixe sont en cours de déclenchement/d'arrêt.
- L'alternance de pompe principale est en cours.
- L'arrêt en l'absence de débit assure que toutes les pompes à vitesse fixe s'arrêtent individuellement jusqu'à ce que l'état d'absence de débit disparaisse.

5.6 Vue d'ensemble du décolmatage

Dans les applications associées à l'eau, l'objectif de la fonction de décolmatage est de dégager l'aube de la pompe des débris afin que la pompe fonctionne normalement.

Un événement de décolmatage est défini comme l'intervalle entre le début du décolmatage par le variateur et la fin du décolmatage. Au début d'un décolmatage, le variateur suit d'abord une rampe jusqu'à un arrêt, puis un délai expire avant le début du premier cycle.

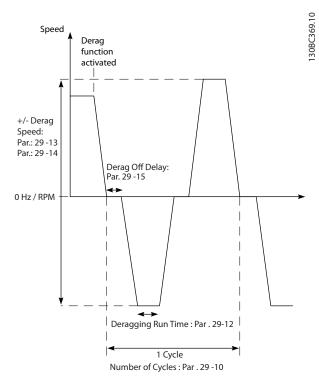


Illustration 5.12 Fonction décolmatage

Si un décolmatage est déclenché depuis un état de variateur arrêté, le premier retard est ignoré. L'événement de décolmatage est constitué de plusieurs cycles ; un cycle se compose d'une impulsion en marche arrière, suivie d'une impulsion en marche avant. Le décolmatage est considéré comme terminé à la fin de l'exécution du nombre spécifié de cycles. Plus spécifiquement, à la dernière impulsion (toujours en avant) du dernier cycle, le décolmatage est considéré comme terminé à l'expiration

du temps de décolmatage programmé (le variateur fonctionne à la vitesse de décolmatage). Entre les impulsions, la sortie du variateur passe en roue libre pendant une temporisation de coupure spécifiée afin de laisser décanter les débris dans la pompe.

AVIS!

Ne pas activer le décolmatage si la pompe ne peut pas fonctionner en marche arrière.

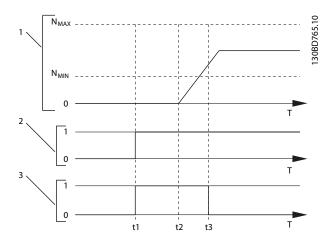
Il existe trois notifications pour un événement de décolmatage en cours :

- État sur le LCP : Décolmatage à distance.
- Un bit dans le mot d'état élargi (bit 23, 80 0000 hex).
- Une sortie digitale peut être configurée pour refléter l'état actif du décolmatage.

Selon l'application et l'utilisation visées, cette fonction peut être utilisée à titre préventif ou comme mesure curative. Elle peut également être déclenchée/démarrée selon les méthodes suivantes :

- à chaque ordre de démarrage (paramétre 29-11 Derag at Start/Stop);
- à chaque ordre d'arrêt (paramétre 29-11 Derag at Start/Stop);
- à chaque ordre de démarrage/arrêt (paramétre 29-11 Derag at Start/Stop);
- sur une entrée digitale (groupe de paramètres 5-1* Entrées digitales) ;
- sur action de variateur avec le contrôleur logique avancé (paramétre 13-52 SL Controller Action);
- comme action temporisée (groupe de paramètres 23-** Fonct. liées au tps);
- sur détection de puissance élevée (groupe de paramètres 29-2* Derag Power Tuning (Régl. puiss. décolm.)).

5.7 Vue d'ensemble de la pré/postlubrification


Les pièces mécaniques de certains moteurs doivent être lubrifiées avant et pendant le fonctionnement afin d'éviter les dommages et l'usure. C'est tout particulièrement le cas lorsque le moteur ne tourne pas pendant une longue période. La prélubrification prend également en charge les applications qui nécessitent le fonctionnement de certains ventilateurs d'extraction. La caractéristique de prélubrification indique à un dispositif externe qu'il peut commencer à lancer une action spécifique pendant une période définie par l'utilisateur à partir du front montant d'un ordre de marche (une demande de démarrage par exemple). En outre, un retard du démarrage (paramétre 1-71 Start Delay) peut être saisi de façon à ce

que la prélubrification se produise uniquement lorsque le variateur est arrêté et à ce qu'elle se termine juste avant l'accélération du variateur. La prélubrification peut aussi être configurée de façon à ce que le dispositif externe reste signalé à tout moment lorsque le variateur est en fonctionnement ou de façon à ce que le signal reste actif après l'arrêt du moteur (paramétre 29-42 Post Lube Time). Des exemples d'applications incluent un dispositif de lubrification des pièces mécaniques d'un moteur ou d'une pompe ou un type de ventilateur d'extraction.

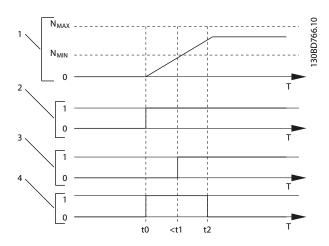
Un exemple d'utilisation d'un dispositif de lubrification pourrait impliquer le démarrage de la lubrification au front montant d'une demande de démarrage. Différer le démarrage d'un certain temps et arrêter la lubrification lorsque le délai expire et que le variateur démarre.

L'Illustration 5.13 présente une utilisation différente de la caractéristique. Dans ce cas, la temporisation expire alors que le variateur est déjà en train d'accélérer. Voir les paramètres associés dans le *Tableau 5.1*.

1	Courbe de vitesse.
2	Ordre de démarrage (par exemple la borne 18).
3	Signal de sortie de prélubrification.
t ₁	Ordre de démarrage émis (la borne 18 par exemple est
	activée). La temporisation du démarrage
	(paramétre 1-71 Start Delay) et la temporisation de
	prélubrification (paramétre 29-41 Pre Lube Time).
t ₂	La temporisation du démarrage expire. Le variateur
	commence à accélérer.
t ₃	La temporisation de prélubrification (paramétre 29-41 Pre
	Lube Time) expire.

Illustration 5.13 Exemple de fonction de pré/post-lubrification

Paramètre et	Description	Réglages	Unité
nom			
Paramétre 29-4	Sélectionner la	[0]*Disabled	-
0 Pre/Post Lube	fonction de pré/post-	(Inactif)	
Function	lubrification. Utiliser	[1] Pre Lube Only	
	le	(Prélub.	
	paramétre 1-71 Start	seulement)	
	Delay pour définir la	[2] Pre & Running	
	temporisation avant	(Pré et fonction-	
	que le moteur ne	nement)	
	commence à	[3] Pre & Running	
	accélérer.	& Post (Pré et	
		fonctionnement	
		et post)	
Paramétre 29-4	Saisir la durée du	0–600 (*10)	S
1 Pre Lube Time	signal après le signal		
	de démarrage. À		
	utiliser uniquement		
	lorsque l'option [1]		
	Pre Lube Only (Prélub.		
	seulement) est		
	sélectionnée au		
	paramétre 29-40 Pre/		
	Post Lube Function.		
Paramétre 29-4	Sélectionner la durée	0–600 (*10)	s
2 Post Lube	du signal après l'arrêt		
Time	du moteur. À utiliser		
	uniquement lorsque		
	l'option [3] Pre &		
	Running & Post (Pré et		
	fonctionnement et		
	post) est sélectionnée		
	au		
	paramétre 29-40 Pre/		
	Post Lube Function.		


Tableau 5.1 Paramètres de pré/post-lubrification

5.8 Vue d'ensemble de la confirmation du débit

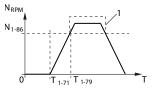
La fonction Confirmation du débit a été prévue pour les applications sur lesquelles le moteur ou la pompe doit tourner dans l'attente d'un événement externe. La surveillance de Confirmation du débit attend une entrée digitale du capteur sur un robinet-vanne, un interrupteur de débit ou un dispositif externe similaire indiquant que le dispositif est dans la position ouverte et que le débit est possible. Au paramétre 29-50 Validation Time, définir le temps d'attente par le VLT® AQUA Drive FC 202 du signal d'entrée digitale depuis le dispositif externe afin de confirmer le débit. Une fois le débit confirmé, le variateur vérifie à nouveau le signal après le délai de vérification du débit puis fonctionne normalement. L'état du LCP indique Verifying flow (Débit en cours de vérification) lorsque la surveillance du débit est active.

Si le signal d'entrée digitale attendu devient inactif avant l'expiration du temps de validation du débit ou du temps de vérification du débit, le variateur se déclenche avec l'alarme alarm 92, Abs. de débit.

1	Courbe de vitesse.
2	Ordre de démarrage (par exemple la borne 18).
3	Signal digital du dispositif externe qui confirme que le
	débit est possible.
4	Vérification du débit.
t ₀	Ordre de démarrage émis (la borne 18 par exemple est
	activée).
t ₁	Le signal digital d'un dispositif externe est activé avant
	que le paramétre 29-50 Validation Time n'expire.
t ₂	Lorsque le paramétre 29-51 Verification Time réussit, le
	variateur vérifie de nouveau le signal provenant du
	dispositif externe puis fonctionne normalement.

Illustration 5.14 Confirmation du débit

Paramètre et	Description	Réglages	Unité
nom			
Paramétre 29-5	L'entrée digitale	0.1-999.0	s
0 Validation	doit être active	(*dépend de la	
Time	pendant le temps	taille)	
	de validation.		
Paramétre 29-5	Le débit sera	0.1-255.0	s
1 Verification	confirmé si, à la fin	(*15)	
Time	du temps de vérifi-		
	cation, l'entrée		
	digitale est encore		
	active.		


Tableau 5.2 Paramètres de confirmation du débit

AVIS!

Les paramètres sont uniquement visibles sur le LCP lorsqu'une entrée digitale est configurée comme confirmation du débit.

5.9 Vue d'ensemble de la surveillance de la vitesse minimum avancée

Certaines pompes sont sensibles au fonctionnement à basse vitesse. Les raisons typiques sont une lubrification ou un refroidissement insuffisant à basse vitesse. Dans des conditions de surcharge, le variateur se protège en utilisant ses caractéristiques de protection intégrales, qui incluent l'abaissement de la vitesse. Par exemple, le contrôleur de limite de courant peut abaisser la vitesse. Dans certains cas, la vitesse peut être inférieure à celle spécifiée au paramétre 4-11 Motor Speed Low Limit [RPM] et au paramétre 4-12 Motor Speed Low Limit [Hz]. Si la vitesse descend au-dessous d'une certaine valeur, la caractéristique de surveillance de la vitesse minimum avancée déclenche le variateur. Si le moteur de la pompe n'atteint pas la vitesse spécifiée au paramétre 1-86 Trip Speed Low [RPM] dans le temps défini au paramétre 1-79 Pump Start Max Time to Trip (l'accélération est trop longue), le variateur se déclenche. Les temporisateurs du paramétre 1-71 Start Delay et du paramétre 1-79 Pump Start Max Time to Trip démarrent en même temps lorsque l'ordre de démarrage est émis. Par exemple, si la valeur du paramétre 1-71 Start Delay est supérieure ou égale à celle du paramétre 1-79 Pump Start Max Time to Trip, le variateur ne démarre jamais.

T ₁₋₇₁	Paramétre 1-71 Start Delay.	
T ₁₋₇₉	Paramétre 1-79 Pump Start Max Time to Trip. Ce temps	
	inclut le temps spécifié dans T ₁₋₇₁ .	
N ₁₋₈₆	Paramétre 1-86 Trip Speed Low [RPM]. Si la vitesse	
	descend en dessous de cette valeur pendant le	
	fonctionnement normal, le variateur se déclenche.	
1	Fonctionnement normal	

Illustration 5.15 Surveillance de la vitesse minimum avancée

5.10 Vue d'ensemble du freinage dynamique

Le freinage dynamique ralentit le moteur à l'aide d'une des méthodes suivantes :

- Freinage CA
 L'énergie de freinage est répartie dans le moteur
 en modifiant les conditions de perte dans le
 moteur (paramétre 2-10 Brake Function = [2]). La
 fonction de freinage CA ne peut pas être utilisée
 dans les applications avec des cycles élevés car
 cela entraîne une surchauffe du moteur.
- Freinage CC
 Un courant CC en surmodulation ajouté au courant CA fonctionne comme un frein magnétique (paramétre 2-02 DC Braking Time ± 0 s).
- Freinage résistance
 Un hacheur de freinage (IGBT) maintient la surtension sous un certain seuil en dirigeant l'énergie du frein du moteur vers la résistance de freinage connectée (paramétre 2-10 Brake Function = [1]). Pour plus d'informations sur comment choisir une résistance de freinage, consulter le manuel de configuration du VLT® Brake Resistor MCE 101.

Pour les variateurs équipés de l'option de freinage, un hacheur de freinage (IGBT), avec les bornes 81(R-) et 82(R+), est inclus pour la connexion d'une résistance de freinage externe.

La fonction du hacheur de freinage (IGBT) consiste à limiter la tension du circuit intermédiaire chaque fois que la limite de tension maximale est dépassée. Pour ce faire, le hacheur de freinage (IGBT) commute la résistance montée en externe, au niveau du bus CC, pour supprimer la tension CC excessive présente dans les condensateurs du bus.

L'installation externe de la résistance de freinage présente les avantages de pouvoir choisir la résistance en fonction des besoins de l'application, de dissiper l'énergie hors du panneau de commande et de protéger le variateur contre les surchauffes si la résistance de freinage est en surcharge.

Le signal de gâchette du hacheur de freinage (IGBT) émane de la carte de commande et est transmis au hacheur de freinage via la carte de puissance et la carte de commande de gâchette. De plus, les cartes de puissance et de commande surveillent le hacheur de freinage (IGBT) pour éviter les éventuels courts-circuits. La carte de puissance surveille également la résistance de freinage pour éviter les éventuelles surcharges.

5.11 Vue d'ensemble de la répartition de la charge

La répartition de la charge est une fonction permettant de raccorder des circuits CC de plusieurs variateurs, afin de créer un système multi-variateurs pour faire tourner une charge mécanique. La répartition de la charge présente les avantages suivants :

Économies d'énergie

Un moteur fonctionnant en mode régénératif peut alimenter des variateurs fonctionnant en mode entraînement moteur.

Moins de besoin de pièces de rechange

Généralement, seule une résistance de freinage est nécessaire pour l'ensemble du système de variateur au lieu d'une résistance de freinage par variateur.

Alimentation de secours

En cas de défaut secteur, tous les variateurs reliés peuvent être alimentés via le circuit intermédiaire depuis une alimentation de secours. L'application peut continuer de fonctionner ou suivre une procédure d'arrêt contrôlé.

Conditions préalables

Les conditions préalables suivantes doivent être remplies avant d'envisager toute répartition de la charge :

- Le variateur doit être équipé de bornes de répartition de la charge.
- La série de produits doit être identique. Utiliser uniquement des variateurs VLT[®] AQUA Drive FC 202 avec d'autres variateurs VLT[®] AQUA Drive FC 202.
- Les variateurs doivent être placés à proximité les uns des autres pour que le câblage entre eux ne soit pas plus long que 25 m (82 pi).
- Les variateurs doivent avoir la même tension nominale.
- Lors de l'ajout d'une résistance de freinage dans une configuration de répartition de la charge, tous les variateurs doivent être équipés d'un hacheur de freinage.
- Des fusibles doivent être ajoutés aux bornes de répartition de la charge.

Pour un schéma d'une application de répartition de la charge respectant les meilleures pratiques, voir l'*Illustration 5.16*. Pour plus d'informations sur les applications de répartition de la charge, veuillez vous adresser à Danfoss.

130BF758.10

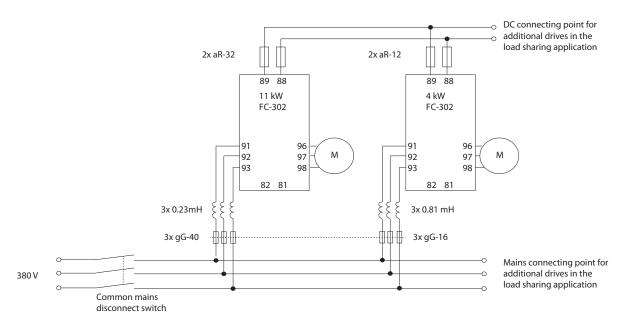


Illustration 5.16 Schéma d'une application de répartition de la charge respectant les meilleures pratiques

Répartition de la charge

Les unités avec option de répartition de la charge intégrée comportent les bornes 89 (+) CC et 88 (-) CC. Dans le variateur, ces bornes sont raccordées au bus CC devant la bobine de réactance du circuit intermédiaire et les condensateurs du bus.

Les bornes de répartition de la charge peuvent être raccordées dans deux configurations différentes.

- Les bornes relient les circuits de bus CC de plusieurs variateurs entre eux. Cette configuration permet à une unité en mode régénératif de partager sa tension du bus excessive avec une autre unité en mode entraînement moteur. La répartition de la charge peut ainsi réduire la nécessité de résistances de freinage dynamique externes, tout en économisant de l'énergie. Le nombre d'unités pouvant être raccordées de cette façon est infini tant qu'elles présentent toutes la même tension nominale. En outre, selon la taille et le nombre d'unités, il peut s'avérer nécessaire d'installer des bobines de réactance CC et des fusibles CC dans les connexions du circuit intermédiaire, et des bobines de réactance CA sur le secteur. Cette configuration requiert des considérations spécifiques.
- Le variateur est alimenté exclusivement par une source CC. Cette configuration nécessite :
 - une source CC;
 - un moyen d'abaisser la tension dans le bus CC lors de la mise sous tension.

5.12 Vue d'ensemble de la régénération

La régénération se produit généralement dans des applications à freinage continu, comme des grues/dispositifs de levage, des convoyeurs descendants et des centrifuges dans lesquelles l'énergie est extraite d'un moteur en décélération.

L'énergie excédentaire est éliminée du variateur par l'une des options suivantes :

- le hacheur de freinage permet la dissipation de l'énergie excédentaire sous forme de chaleur dans les bobines de résistance de freinage;
- les bornes régénératrices permettent le raccordement d'une unité de régénération tierce au variateur, ce qui permet de renvoyer l'énergie excédentaire au réseau électrique.

Renvoyer l'énergie excédentaire au réseau électrique est le moyen le plus efficace d'utiliser l'énergie régénérée dans des applications utilisant un freinage continu.

5

5.13 Vue d'ensemble du refroidissement par le canal de ventilation arrière

Une gaine de canal de ventilation arrière fait passer de l'air de refroidissement sur les dissipateurs de chaleur, tout en évitant au maximum la zone électronique. Un joint IP54/Type 12 se trouve entre la gaine de canal de ventilation arrière et la partie électronique du variateur VLT[®]. Ce refroidissement par le canal de ventilation arrière permet d'évacuer 90 % des pertes de chaleur directement vers l'extérieur du boîtier. Cette conception améliore la fiabilité et prolonge la vie du composant en réduisant considérablement les températures intérieures et la contamination des composants électroniques. Différents kits de refroidissement par le canal de ventilation arrière permettent de rediriger la circulation de l'air en fonction de besoins particuliers.

5.13.1 Circulation de l'air dans les boîtiers D1h-D8h

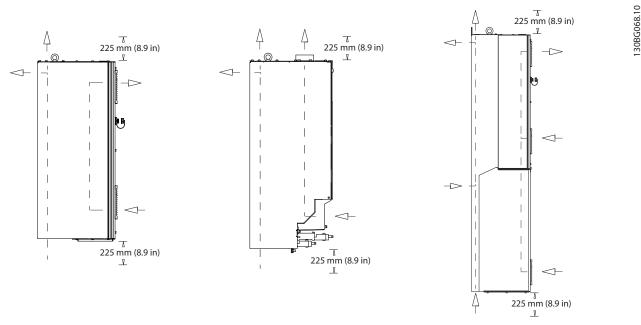
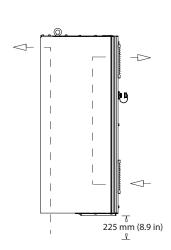
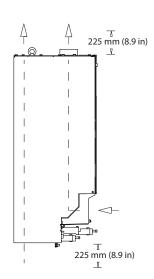




Illustration 5.17 Configuration de circulation d'air standard pour les boîtiers D1h/D2h (gauche), D3h/D4h (centre) et D5h-D8h (droite).

130BC

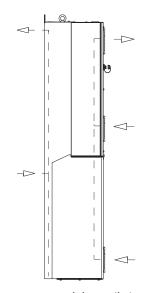


Illustration 5.18 Configuration de circulation d'air en option à l'aide de kits de refroidissement par canal de ventilation arrière pour les boîtiers D1h–D8h.

(Gauche) Kit de refroidissement avec entrée basse et sortie arrière pour les boîtiers D1h/D2h.

(Centre) Kit de refroidissement avec entrée basse et sortie haute pour les boîtiers D3h/D4h.

(Droite) Kit de refroidissement avec entrée arrière et sortie arrière pour les boîtiers D5-D8h.

Danfoss

Caractéristiques du produit

5.13.2 Circulation de l'air dans les boîtiers E1h-E4h

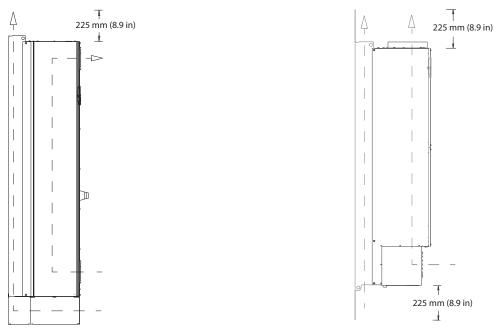


Illustration 5.19 Configuration de circulation d'air standard pour E1h/E2h (gauche) et E3h/E4h (droite)

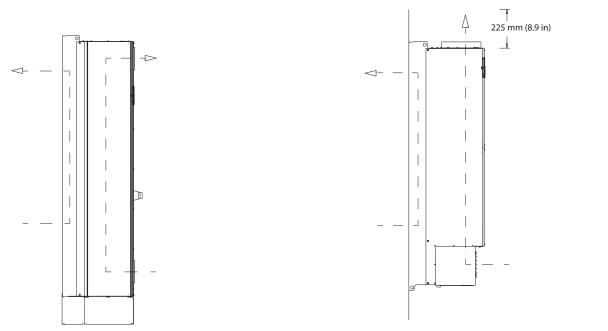


Illustration 5.20 Configuration de circulation d'air par l'arrière en option pour E1h/E2h (gauche) et E3h/E4h (droite)

6 Vue d'ensemble des options et accessoires

6.1 Dispositifs de bus de terrain

Cette section décrit les dispositifs de bus de terrain disponibles avec la série VLT® AQUA Drive FC 202. En utilisant un dispositif de bus de terrain, vous réduisez les coûts de votre système, vous pouvez communiquer plus vite et plus efficacement et vous bénéficiez d'une interface utilisateur plus simple. Pour obtenir les références, se reporter au chapitre 13.2 Références des options et accessoires.

6.1.1 VLT® PROFIBUS DP V1 MCA 101

Le VLT® PROFIBUS DP V1 MCA 101 offre :

- un haut niveau de disponibilité et de compatibilité, un support pour tous les principaux fournisseurs PLC, une compatibilité avec les versions futures;
- une communication rapide et efficace, une installation transparente, un diagnostic avancé ainsi qu'un paramétrage et une autoconfiguration des données de process via un fichier GSD;
- un paramétrage acyclique à l'aide d'automates finis PROFIBUS DP V1, PROFIdrive ou profil FC de Danfoss.

6.1.2 VLT® DeviceNet MCA 104

Le VLT® DeviceNet MCA 104 offre :

- la prise en charge du profil de variateur de fréquence ODVA à l'aide de l'instance E/S 20/70 et 21/71 garantit la compatibilité avec les systèmes existants;
- les avantages des politiques de tests de conformité ODVA qui garantissent que les produits sont interexploitables.

6.1.3 VLT® PROFINET MCA 120

Le VLT® PROFINET MCA 120 associe la plus haute performance au plus haut degré d'ouverture. L'option a été conçue de façon à ce que les caractéristiques du VLT® PROFIBUS MCA 101 puissent être réutilisées, tout en minimisant l'effort de l'utilisateur pour faire migrer PROFINET et en sécurisant l'investissement dans le programme PLC.

- Mêmes types de PPO que le VLT[®] PROFIBUS DP V1 MCA 101 afin de faciliter la migration vers PROFINET.
- Serveur web intégré pour un diagnostic à distance et une lecture des paramètres de base du variateur.
- Prise en charge de MRP.
- Prise en charge de DP-V1. Le diagnostic permet une gestion facile, rapide et standardisée des avertissements et des informations relatives aux défauts dans le PLC, tout en améliorant la largeur de bande du système.
- Prise en charge de PROFIsafe s'il est associé à VLT[®] Safety Option MCB 152.
- Mise en œuvre conformément à la classe B de conformité.

6.1.4 VLT® EtherNet/IP MCA 121

Ethernet constitue la future norme de communication de l'usine. Le VLT® EtherNet/IP MCA 121 s'appuie sur les nouvelles technologies disponibles pour un usage industriel et gère même les exigences les plus strictes. EtherNet/IP™ étend l'Ethernet commercial standard au protocole industriel (CIP™), le même protocole en deux couches et le même modèle objet qu'avec DeviceNet.

Cette option offre les fonctions avancées suivantes :

- répartiteur haute performance intégré permettant une topologie en ligne sans besoin d'interrupteurs externes;
- anneau DLR (à partir d'octobre 2015);
- fonctions de commutation et de diagnostic avancées;
- serveur web intégré ;
- client e-mail pour notification d'intervention ;
- communication monodiffusion et multidiffusion.

6.1.5 VLT® Modbus TCP MCA 122

Le VLT® Modbus TCP MCA 122 se connecte aux réseaux basés sur le Modbus TCP. Il gère un intervalle de connexion jusqu'à 5 ms dans les deux sens, se plaçant parmi les dispositifs Modbus TCP performants les plus rapides du marché. Concernant la redondance du maître, il inclut un remplacement à chaud entre 2 maîtres.

Il propose d'autres fonctions, comme :

- serveur web intégré pour le diagnostic à distance et la lecture des paramètres de base du variateur;
- notification d'e-mail pouvant être configurée pour envoyer un e-mail vers 1 ou plusieurs destinataires si certains avertissements ou alertes sont émis ou effacés;
- connexion PLC à maître double pour la redondance.

6.2 Extensions fonctionnelles

Cette section décrit les extensions fonctionnelles disponibles en option avec la série VLT® AQUA Drive FC 202. Pour obtenir les références, se reporter au chapitre 13.2 Références des options et accessoires.

6.2.1 VLT® General Purpose I/O Module MCB 101

L'option VLT[®] General Purpose I/O Module MCB 101 offre un large éventail d'entrées et de sorties de commande.

- 3 entrées digitales 0-24 V : logique 0 < 5 V ; logique 1 > 10 V.
- 2 entrées analogiques 0-10 V : résolution 10 bits plus signe.
- 2 sorties digitales NPN/PNP push-pull.
- 1 sortie analogique 0/4-20 mA.
- Raccord à ressort.

6.2.2 VLT® Relay Card MCB 105

La VLT[®] Relay Card MCB 105 étend les fonctions de relais avec 3 sorties relais supplémentaires.

- Protège le raccord du câble de commande.
- Câblage sur bornes à ressorts.

Vitesse de commutation max. (charge nominale/charge min.)

6 minutes⁻¹/20 s⁻¹.

Charge max. sur les bornes

Charge résistive CA-1: 240 V CA, 2 A.

6.2.3 VLT® Analog I/O Option MCB 109

L'option VLT[®] Analog I/O MCB 109 peut être facilement installée dans le variateur pour une mise à niveau du rendement avancé et un contrôle via les entrées/sorties supplémentaires. Cette option actualise également le variateur avec une alimentation de secours sur batterie pour l'horloge intégrée au variateur. Cette alimentation de

secours sur batterie permet une utilisation stable de toutes les actions temporisées utilisées par le variateur.

- 3 entrées analogiques, chacune étant configurable comme entrée de tension et de température.
- Connexion de signaux analogiques 0-10 V mais aussi d'entrées de température PT1000 et NI1000.
- 3 sorties analogiques, chacune étant configurable comme sorties 0-10 V.

6.2.4 VLT® PTC Thermistor Card MCB 112

La VLT[®] PTC Thermistor Card MCB 112 offre un contrôle supplémentaire du moteur par rapport à la fonction ETR intégrée et à la borne de la thermistance.

- Protège le moteur contre les surchauffes.
- Homologation ATEX pour une utilisation avec des moteurs EX-d.
- Utilise la fonction Safe Torque Off homologuée conforme à la norme SIL 2 CEI 61508.

6.2.5 VLT® Sensor Input Option MCB 114

L'option VLT[®] Sensor Input MCB 114 protège le moteur contre les surchauffes en surveillant la température des paliers et des bobinages du moteur.

- 3 entrées de capteur autodétectrices pour les capteurs PT100/PT1000 à 2 ou 3 fils.
- 1 entrée analogique supplémentaire 4-20 mA.

6.2.6 VLT® Extended Cascade Controller MCO 101

Facile à installer et à mettre à niveau, le VLT® Extended Cascade Controller MCO 101 peut faire fonctionner plus de pompes et contrôler les pompes de manière plus avancée en mode maître/esclave.

- Jusqu'à six pompes dans la configuration en cascade standard.
- Jusqu'à cinq pompes dans la configuration maître/esclave.

Charge max. sur les bornes

- Charge résistive CA-1 240 V CA 2 A.
- Charge inductive CA-15 à cos phi 0,4 240 V CA 0,2 A.
- Charge résistive CC-1 24 V AC 1 A.
- Charge inductive CC-13 à cos phi 0,4 24 V AC 0,1 A.

Charge min. sur les bornes

- CC 5 V 10 mA.
- Vitesse de commutation max. à charge nominale/ charge min. : 6 min-1/20 s-1.

6.2.7 VLT® Advanced Cascade Controller MCO 102

Facile à installer, le VLT[®] Advanced Cascade Controller MCO 102 met à niveau le contrôleur de cascade intégré pour faire fonctionner jusqu'à 8 pompes et pour contrôler les pompes en mode maître/esclave de façon plus avancée.

- Le matériel de contrôleur de cascade est le même pour l'ensemble de la gamme jusqu'à 1,2 MW.
- Jusqu'à 8 pompes dans la configuration en cascade standard. Jusqu'à 8 pompes dans la configuration maître/esclave.

6.3 Contrôle de mouvement et cartes relais

Cette section décrit les options de contrôle de mouvement et cartes relais disponibles avec la série VLT® AQUA Drive FC 202. Pour obtenir les références, se reporter au chapitre 13.2 Références des options et accessoires.

6.3.1 VLT® Extended Relay Card MCB 113

La VLT® Extended Relay Card MCB 113 ajoute des entrées/ sorties pour une plus grande flexibilité.

- 7 entrées digitales.
- 2 sorties analogiques.
- 4 relais unipolaires bidirectionnels.
- Conforme aux recommandations NAMUR.
- Capacité d'isolation galvanique.

6.4 Résistances de freinage

Dans les applications où le moteur est utilisé comme un frein, l'énergie est générée dans le moteur et renvoyée vers le variateur. La tension du circuit CC du variateur augmente lorsque l'énergie ne peut pas être transportée à nouveau vers le moteur. Dans les applications avec freinage fréquent et/ou charges à inertie élevée, cette augmentation peut entraîner une alarme de surtension du variateur, puis un arrêt. Les résistances de freinage sont utilisées pour dissiper l'énergie excédentaire liée au freinage par récupération. La résistance est sélectionnée en fonction de sa valeur ohmique, de son taux de dissipation de puissance et de sa taille physique. Danfoss propose une gamme complète de résistances spécialement conçues pour les variateurs Danfoss. Pour connaître les références et obtenir d'autres informations sur le dimensionnement

des résistances de freinage, se reporter au manuel de configuration du VLT® Brake Resistor MCE 101.

6.5 Filtres sinus

Lorsqu'un moteur est contrôlé par un variateur, il émet un bruit de résonance. Ce bruit, dû à la construction du moteur, se produit à chaque commutation de l'onduleur du variateur. La fréquence du bruit des résonances correspond ainsi à la fréquence de commutation du variateur.

Danfoss peut proposer un filtre sinus qui atténue le bruit acoustique du moteur. Le filtre réduit le temps de rampe d'accélération de la tension, le pic de tension de charge (U_{PIC}) et le courant d'ondulation (ΔI) vers le moteur, ce qui signifie que le courant et la tension deviennent quasiment sinusoïdaux. Le bruit acoustique du moteur est réduit au strict minimum.

Le courant d'ondulation des bobines du filtre sinus génère aussi un certain bruit. Remédier au problème en intégrant le filtre dans une armoire ou un boîtier.

Pour connaître les références et obtenir plus d'informations sur les filtres sinus, se reporter au *manuel de configuration des filtres de sortie*.

6.6 Filtres dU/dt

Danfoss fournit des filtres dU/dt qui sont des filtres passebas à mode différentiel qui réduisent les pics de tension entre phases de la borne du moteur et diminuent le temps de montée jusqu'à un niveau qui réduit la contrainte sur l'isolation des bobinages du moteur. C'est un problème typique des process utilisant des câbles de moteur courts.

Comparés aux filtres sinus, les filtres dU/dt comportent une fréquence d'arrêt supérieure à la fréquence de commutation.

Pour connaître les références et obtenir plus d'informations sur les filtres dU/dt, se reporter au manuel de configuration des filtres de sortie.

6.7 Filtres en mode commun

Les noyaux hautes fréquences en mode commun (noyaux HF-CM) réduisent les interférences électromagnétiques et éliminent les dommages dus aux décharges électriques. Ce sont des noyaux magnétiques spécifiques nanocristallins qui présentent une performance de filtrage supérieure par rapport aux noyaux de ferrite courants. Le noyau HF-CM agit comme un inducteur en mode commun entre les phases et la terre.

Installés autour des trois phases moteur (U, V, W), ils réduisent les courants en mode commun haute fréquence.

Ainsi, l'interférence électromagnétique haute fréquence provenant du câble du moteur s'en trouve réduite.

Pour connaître les références, se reporter au manuel de configuration des filtres de sortie.

6.8 Filtres harmoniques

Les VLT® Advanced Harmonic Filters AHF 005 & AHF 010 ne doivent pas être comparés aux filtres électroniques harmoniques traditionnels. Les filtres harmoniques Danfoss ont été spécialement conçus pour s'adapter aux variateurs Danfoss.

En raccordant le filtre AHF 005 ou AHF 010 face à un variateur Danfoss, la distorsion d'harmoniques de courant totale renvoyée vers le secteur est réduite à 5 % et 10 %.

Pour connaître les références et obtenir d'autres informations sur le dimensionnement des résistances de freinage, se reporter au manuel de configuration des VLT® Advanced Harmonic Filters AHF 005/AHF 010.

6.9 Kits haute puissance

Des kits haute puissance, comme un refroidissement par l'arrière, un appareil de chauffage et une protection d'accès aux bornes puissance, sont disponibles pour ces boîtiers. Voir le *chapitre 13.2 Références des options et accessoires* pour une brève description et les références des kits disponibles.

7 Spécifications

7.1 Données électriques, 380-480 V

VLT® AQUA Drive FC 202	N1	10K	N1	N132		N160	
Charge normale/élevée	НО	NO	но	NO	НО	NO	
(Surcharge élevée (HO) = 150 % du courant pendant 60 s,							
surcharge normale (NO) = 110 % du courant pendant 60 s)							
Sortie d'arbre typique à 400 V [kW]	90	110	110	132	132	160	
Sortie d'arbre typique à 460 V [HP]	125	150	150	200	200	250	
Sortie d'arbre typique à 480 V [kW]	110	132	132	160	160	200	
Taille de boîtier			D1h/D3h/	/D5h/D6h			
Courant de sortie (triphasé)							
Continu (à 400 V) [A]	177	212	212	260	260	315	
Intermittent (surcharge 60 s) (à 400 V) [A]	266	233	318	286	390	347	
Continu (à 460/480 V) [A]	160	190	190	240	240	302	
Intermittent (surcharge 60 s) (à 460/480 V) [kVA]	240	209	285	264	360	332	
kVA continu (à 400 V) [kVA]	123	147	147	180	180	218	
kVA continu (à 460 V) [kVA]	127	151	151	191	191	241	
kVA continu (à 480 V) [kVA]	139	165	165	208	208	262	
Courant d'entrée maximal						!	
Continu (à 400 V) [A]	171	204	204	251	251	304	
Continu (à 460/480 V) [A]	154	183	183	231	231	291	
Nombre et taille de câbles maximum par phase			!	!		!	
- Secteur, moteur, frein et répartition de la charge mm² (AWG)	2 x 95	(2 x 3/0)	2 x 95 (2 x 3/0)		2 x 95 (2 x 3/0		
Fusibles secteur externes max. [A] ¹⁾	3	15	3	50	4	00	
Perte de puissance estimée à 400 V [W] ^{2), 3)}	2031	2559	2289	2954	2923	3770	
Perte de puissance estimée à 460 V [W] ^{2), 3)}	1828	2261	2051	2724	2089	3628	
Rendement ³⁾	0,	98	0,	98	0,	98	
Fréquence de sortie [Hz]	0-	590	0-	590	0-	590	
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	110	(230)	110	(230)	
Arrêt surtempérature carte de commande [° C (° F)]	75	(167)	75 (167)	75 (167)		

Tableau 7.1 Données électriques pour les boîtiers D1h/D3h/D5h/D6h, alimentation secteur 3 x 380-480 V CA

3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

¹⁾ Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.

²⁾ La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

VLT® AQUA Drive FC 202	N200		N250		N315	
Charge normale/élevée	НО	NO	НО	NO	но	NO
(Surcharge élevée (HO) = 150 % du courant pendant 60 s,						
surcharge normale (NO) = 110 % du courant pendant 60 s)						
Sortie d'arbre typique à 400 V [kW]	160	200	200	250	250	315
Sortie d'arbre typique à 460 V [HP]	250	300	300	350	350	450
Sortie d'arbre typique à 480 V [kW]	200	250	250	315	315	355
Taille de boîtier		•	D2h/D4h/	D7h/D8h	•	
Courant de sortie (triphasé)						
Continu (à 400 V) [A]	315	395	395	480	480	588
Intermittent (surcharge 60 s) (à 400 V) [A]	473	435	593	528	720	647
Continu (à 460/480 V) [A]	302	361	361	443	443	535
Intermittent (surcharge 60 s) (à 460/480 V) [kVA]	453	397	542	487	665	589
kVA continu (à 400 V) [kVA]	218	274	274	333	333	407
kVA continu (à 460 V) [kVA]	241	288	288	353	353	426
kVA continu (à 480 V) [kVA]	262	313	313	384	384	463
Courant d'entrée maximal					•	
Continu (à 400 V) [A]	304	381	381	463	463	567
Continu (à 460/480 V) [A]	291	348	348	427	427	516
Nombre et taille de câbles maximum par phase					•	
- Secteur, moteur, frein et répartition de la charge mm²	2 x 185 (2	x 350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 :	x 350 mcm)
(AWG)						
Fusibles secteur externes max. [A] ¹⁾	5.	550 630		80	00	
Perte de puissance estimée à 400 V [W] ^{2), 3)}	3093	4116	4039	5137	5005	6674
Perte de puissance estimée à 460 V [W] ^{2), 3)}	2872	3569	3575	4566	4458	5714
Rendement ³⁾	0,	98	0,9	98	0,	98
Fréquence de sortie [Hz]	0	590	0-5	590	0-5	590
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	110	(230)	110	(230)
Arrêt surtempérature carte de commande [° C (° F)]	80 (176)		80 (176)		80 (176)	

Tableau 7.2 Données électriques pour les boîtiers D2h/D4h/D7h/D8h, alimentation secteur 3 x 380-480 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N355		N4	100	N450	
Charge normale/élevée	НО	NO	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant						
pendant 60 s, surcharge normale (NO) = 110 %						
du courant pendant 60 s)						
Sortie d'arbre typique à 400 V [kW]	315	355	355	400	400	450
Sortie d'arbre typique à 460 V [HP]	450	500	500	600	550	600
Sortie d'arbre typique à 480 V [kW]	355	400	400	500	500	530
Taille de boîtier	E1h/	E3h	E1h	/E3h	E1h,	/E3h
Courant de sortie (triphasé)					•	
Continu (à 400 V) [A]	600	658	658	745	695	800
Intermittent (surcharge 60 s) (à 400 V) [A]	900	724	987	820	1043	880
Continu (à 460/480 V) [A]	540	590	590	678	678	730
Intermittent (surcharge 60 s) (à 460/480 V) [A]	810	649	885	746	1017	803
kVA continu (à 400 V) [kVA]	416	456	456	516	482	554
kVA continu (à 460 V) [kVA]	430	470	470	540	540	582
Courant d'entrée maximal			!			
Continu (à 400 V) [A]	578	634	634	718	670	771
Continu (à 460/480 V) [A]	520	569	569	653	653	704
Nombre et taille de câbles maximum par phase	(E1h)					
- Secteur et moteur sans frein [mm² (AWG)]	5 x 240 (5 x	500 mcm)	5 x 240 (5	x 500 mcm)	5 x 240 (5 x	c 500 mcm)
- Secteur et moteur avec frein [mm² (AWG)]	4 x 240 (4 x	500 mcm)	4 x 240 (4 x 500 mcm)		4 x 240 (4 x 500 mcm)	
- Freinage ou régénération [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
Nombre et taille de câbles maximum par phase	(E3h)		•			
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6 x	500 mcm)	6 x 240 (6 x 500 mcm)		6 x 240 (6 x	c 500 mcm)
- Secteur et moteur avec frein [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Répartition de la charge ou régénération [mm²	4 105 /4	250	4 105 /4	250	4 105 /4 .	. 250
(AWG)]	4 x 185 (4 x	350 mcm)	4 X 185 (4)	x 350 mcm)	4 x 185 (4 x 350 mcm	
Fusibles secteur externes max. [A] ²⁾	80	0	8	00	80	00
Perte de puissance estimée à 400 V [W] ^{2), 3)}	6178	6928	6851	8036	7297	8783
Perte de puissance estimée à 460 V [W] ^{2) 3)}	5322	5910	5846	6933	7240	7969
Rendement ³⁾	0,9	98	0,98		0,98	
Fréquence de sortie	0-590) Hz	0-590 Hz		0-59	0 Hz
Arrêt surtempérature radiateur [° C (° F)]	110 (230)		110 (230)		110	(230)
Arrêt surtempérature carte de commande [° C			00.4	176)	00.4	4.7.6\
(° F)]	80 (1	1/6)	80 (176)	80 (176)
Arrêt surtempérature carte de puissance [° C	05 (105)		OF /	195)	85 (105)
(° F)]	85 (185)		85 (185)		03 (
Arrêt surtempérature carte de puissance du	85 (*	185)	0E (10E)		85 (185)
ventilateur [° C (° F)]	63 (85 (185)		03 (103)
Arrêt surtempérature carte d'appel active [° C	85 (185)		85 (185)		85 (185)	
(° F)]	33 (,	33 (,	55 (7

Tableau 7.3 Données électriques pour les boîtiers E1h/E3h, alimentation secteur 3 x 380-480 V CA

¹⁾ Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.

²⁾ La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

³⁾ Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N500		N560	
Charge normale/élevée	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant pendant 60 s, surcharge				
normale (NO) = 110 % du courant pendant 60 s)				
Sortie d'arbre typique à 400 V [kW]	450	500	500	560
Sortie d'arbre typique à 460 V [HP]	600	650	650	750
Sortie d'arbre typique à 480 V [kW]	530	560	560	630
Taille de boîtier	E2h	/E4h	E2h/	E4h
Courant de sortie (triphasé)	•			
Continu (à 400 V) [A]	800	880	880	990
Intermittent (surcharge 60 s) (à 400 V) [A]	1200	968	1320	1089
Continu (à 460/480 V) [A]	730	780	780	890
Intermittent (surcharge 60 s) (à 460/480 V) [A]	1095	858	1170	979
kVA continu (à 400 V) [kVA]	554	610	610	686
kVA continu (à 460 V) [kVA]	582	621	621	709
Courant d'entrée maximal	•			
Continu (à 400 V) [A]	771	848	848	954
Continu (à 460/480 V) [A]	704	752	752	858
Nombre et taille de câbles maximum par phase (E2h)	•			
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6	x 500 mcm)	6 x 240 (6 x	(500 mcm)
- Secteur et moteur avec frein [mm² (AWG)]	5 x 240 (5	x 500 mcm)	5 x 240 (5 x 500 mcm)	
- Freinage ou régénération [mm² (AWG)]	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	(350 mcm)
Nombre et taille de câbles maximum par phase (E4h)	•			
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6	x 500 mcm)	6 x 240 (6 x 500 mcm)	
- Secteur et moteur avec frein [mm² (AWG)]	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	(350 mcm)
- Répartition de la charge ou régénération [mm² (AWG)]	4 x 185 (4	x 350 mcm)	4 x 185 (4 >	(350 mcm)
Fusibles secteur externes max. [A] ¹⁾	12	200	1200	
Perte de puissance estimée à 400 V [W] ^{2), 3)}	8352	9473	9449	11102
Perte de puissance estimée à 460 V [W] ^{2), 3)}	7182	7809	7771	9236
Rendement ³⁾	0,	98	0,9	98
Fréquence de sortie [Hz]	0-	590	0-5	590
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	100 ((212)
Arrêt surtempérature carte de commande [° C (° F)]	80 ((176)	80 (176)
Arrêt surtempérature carte de puissance [° C (° F)]	85 ((185)	85 (185)
Arrêt surtempérature carte de puissance du ventilateur [° C (° F)]	85 ((185)	85 (185)
Arrêt surtempérature carte d'appel active [° C (° F)]	85 (185)		85 (185)	

Tableau 7.4 Données électriques pour les boîtiers E2h/E4h, alimentation secteur 3 x 380-480 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

7.2 Données électriques, 525-690 V

VLT® AQUA Drive FC 202	N7	′5K	NS	00K	N1	10K
Charge normale/élevée	НО	NO	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant pendant						
60 s, surcharge normale (NO) = 110 % du courant						
pendant 60 s)						
Sortie d'arbre typique à 525 V [kW]	45	55	55	75	75	90
Sortie d'arbre typique à 575 V [HP]	60	75	75	100	100	125
Sortie d'arbre typique à 690 V [kW]	55	75	75	90	90	110
Taille de boîtier		•	D1h/D3h	/D5h/D6h	•	•
Courant de sortie (triphasé)						
Continu (à 525 V) [A]	76	90	90	113	113	137
Intermittent (surcharge 60 s) (à 525 V) [A]	114	99	135	124	170	151
Continu (à 575/690 V) [A]	73	86	86	108	108	131
Intermittent (surcharge 60 s) (à 575/690 V) [A]	110	95	129	119	162	144
kVA continu à 525 V [kVA]	69	82	82	103	103	125
kVA continu (à 575 V) [kVA]	73	86	86	108	108	131
kVA continu (à 690 V) [kVA]	87	103	103	129	129	157
Courant d'entrée maximal		•	•		•	•
Continu (à 525 V) [A]	74	87	87	109	109	132
Continu (à 575/690 V)	70	83	83	104	104	126
Nombre et taille de câbles maximum par phase		'	•		•	
- Secteur, moteur, frein et répartition de la charge mm²	2 x 95 ((2 x 3/0)	2 x 95 (2 x 3/0)		2 x 95 (2 x 3/0)	
(AWG)						
Fusibles secteur externes max. [A] ¹⁾	10	60	3	15	3	15
Perte de puissance estimée à 575 V [W] ^{2), 3)}	1098	1162	1162	1428	1430	1740
Perte de puissance estimée à 690 V [W] ^{2), 3)}	1057	1204	1205	1477	1480	1798
Rendement ³⁾	0,	98	0,98		0,	98
Fréquence de sortie [Hz]	0-:	590	0-590		0-	590
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	110	(230)	110	(230)
Arrêt surtempérature carte de commande [° C (° F)]	75 (167)	75 (167)	75 (167)

Tableau 7.5 Données électriques pour les boîtiers D1h/D3h/D5h/D6h, alimentation secteur 3 x 525-690 V CA

3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

7

¹⁾ Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.

²⁾ La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

VLT® AQUA Drive FC 202	N132		N160	
Charge normale/élevée	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant pendant 60 s, surcharge				
normale (NO) = 110 % du courant pendant 60 s)				
Sortie d'arbre typique à 525 V [kW]	90	110	110	132
Sortie d'arbre typique à 575 V [HP]	125	150	150	200
Sortie d'arbre typique à 690 V [kW]	110	132	132	160
Taille de boîtier		D1h/D3h	/D5h/D6h	
Courant de sortie (triphasé)				
Continu (à 525 V) [A]	137	162	162	201
Intermittent (surcharge 60 s) (à 525 V) [A]	206	178	243	221
Continu (à 575/690 V) [A]	131	155	155	192
Intermittent (surcharge 60 s) (à 575/690 V) [A]	197	171	233	211
kVA continu à 525 V [kVA]	125	147	147	183
kVA continu (à 575 V) [kVA]	131	154	154	191
kVA continu (à 690 V) [kVA]	157	185	185	230
Courant d'entrée maximal				
Continu (à 525 V) [A]	132	156	156	193
Continu (à 575/690 V)	126	149	149	185
Nombre et taille de câbles maximum par phase				
- Secteur, moteur, frein et répartition de la charge mm² (AWG)	2 x 95 (2	2 x 3/0)	2 x 95	(2 x 3/0)
Fusibles secteur externes max. [A] ¹⁾	16	60	3	15
Perte de puissance estimée à 575 V [W] ^{2), 3)}	1742	2101	2080	2649
Perte de puissance estimée à 690 V [W] ^{2), 3)}	1800	2167	2159	2740
Rendement ³⁾	0,9	98	0,	98
Fréquence de sortie [Hz]	0–5	90	0-	590
Arrêt surtempérature radiateur [° C (° F)]	110 ((230)	110	(230)
Arrêt surtempérature carte de commande [° C (° F)]	75 (1	167)	75 (167)	
Arrêt surtempérature radiateur [° C (° F)]	0–590 110 (230) 75 (167)		0–590 110 (230) 75 (167)	

Tableau 7.6 Données électriques pour les boîtiers D1h/D3h/D5h/D6h, alimentation secteur 3 x 525-690 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N200		N250		
Surcharge élevée/normale	но	NO	но	NO	
(Surcharge élevée (HO) = 150 % du courant pendant 60 s, surcharge					
normale (NO) = 110 % du courant pendant 60 s)					
Sortie d'arbre typique à 525 V [kW]	132	160	160	200	
Sortie d'arbre typique à 575 V [HP]	200	250	250	300	
Sortie d'arbre typique à 690 V [kW]	160	200	200	250	
Taille de boîtier		D2h/D4h	/D7h/D8h		
Courant de sortie (triphasé)					
Continu (à 525 V) [A]	201	253	253	303	
Intermittent (surcharge 60 s) (à 525 V) [A]	301	278	380	333	
Continu (à 575/690 V) [A]	192	242	242	290	
Intermittent (surcharge 60 s) (à 575/690 V) [A]	288	266	363	319	
kVA continu à 525 V [kVA]	183	230	230	276	
kVA continu (à 575 V) [kVA]	191	241	241	289	
kVA continu (à 690 V) [kVA]	229	289	289	347	
Courant d'entrée maximal					
Continu (à 525 V) [A]	193	244	244	292	
Continu (à 575/690 V)	185	233	233	279	
Nombre et taille de câbles maximum par phase		•	•		
- Secteur, moteur, frein et répartition de la charge mm² (AWG)	2 x 185	(2 x 350)	2 x 185	(2 x 350)	
Fusibles secteur externes max. [A] ¹⁾	55	50	5.	50	
Perte de puissance estimée à 575 V [W] ^{2), 3)}	2361	3074	3012	3723	
Perte de puissance estimée à 690 V [W] ^{2), 3)}	2446	3175	3123	3851	
Rendement ³⁾	0,9	98	0,	98	
Fréquence de sortie [Hz]	0-5	590	0-	590	
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	110	(230)	
Arrêt surtempérature carte de commande [° C (° F)]	80 (176)	80 ([176]	

Tableau 7.7 Données électriques pour les boîtiers D2h/D4h/D7h/D8h, alimentation secteur 3 x 525-690 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N315		N400	
Surcharge élevée/normale	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant pendant 60 s, surcharge				
normale (NO) = 110 % du courant pendant 60 s)				
Sortie d'arbre typique à 525 V [kW]	200	250	250	315
Sortie d'arbre typique à 575 V [HP]	300	350	350	400
Sortie d'arbre typique à 690 V [kW]	250	315	315	400
Taille de boîtier		D2h/D4h	/D7h/D8h	
Courant de sortie (triphasé)				
Continu (à 525 V) [A]	303	360	360	418
Intermittent (surcharge 60 s) (à 525 V) [A]	455	396	540	460
Continu (à 575/690 V) [A]	290	344	344	400
Intermittent (surcharge 60 s) (à 575/690 V) [A]	435	378	516	440
kVA continu à 525 V [kVA]	276	327	327	380
kVA continu (à 575 V) [kVA]	289	343	343	398
kVA continu (à 690 V) [kVA]	347	411	411	478
Courant d'entrée maximal				
Continu (à 525 V) [A]	292	347	347	403
Continu (à 575/690 V)	279	332	332	385
Nombre et taille de câbles maximum par phase		•	•	
- Secteur, moteur, frein et répartition de la charge mm² (AWG)	2 x 185	(2 x 350)	2 x 185	(2 x 350)
Fusibles secteur externes max. [A] ¹⁾	5.5	50	5	50
Perte de puissance estimée à 575 V [W] ^{2), 3)}	3642	4465	4146	5028
Perte de puissance estimée à 690 V [W] ^{2), 3)}	3771	4614	4258	5155
Rendement ³⁾	0,	98	0,	98
Fréquence de sortie [Hz]	0-5	590	0-	590
Arrêt surtempérature radiateur [° C (° F)]	110	(230)	110	(230)
Arrêt surtempérature carte de commande [° C (° F)]	80 (176) 80 (176		(176)	

Tableau 7.8 Données électriques pour les boîtiers D2h/D4h/D7h/D8h, alimentation secteur 3 x 525-690 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N450		N500	
Charge normale/élevée	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant				
pendant 60 s, surcharge normale (NO) = 110 % du				
courant pendant 60 s)				
Sortie d'arbre typique à 525 V [kW]	315	355	315	400
Sortie d'arbre typique à 575 V [HP]	400	450	400	500
Sortie d'arbre typique à 690 V [kW]	355	450	400	500
Taille de boîtier	E1h	/E3h	E1h/l	E3h
Courant de sortie (triphasé)				
Continu (à 525 V) [A]	395	470	429	523
Intermittent (surcharge 60 s) (à 525 V) [A]	593	517	644	575
Continu (à 575/690 V) [A]	380	450	410	500
Intermittent (surcharge 60 s) (à 575/690 V) [A]	570	495	615	550
kVA continu à 525 V [kVA]	376	448	409	498
kVA continu (à 575 V) [kVA]	378	448	408	498
kVA continu (à 690 V) [kVA]	454	538	490	598
Courant d'entrée maximal		•		
Continu (à 525 V) [A]	381	453	413	504
Continu (à 575/690 V) [A]	366	434	395	482
Nombre et taille de câbles maximum par phase (E	1h)	•		
- Secteur et moteur sans frein [mm² (AWG)]	5 x 240 (5 x 500 mcm)		5 x 240 (5 x 500 mcm)	
- Secteur et moteur avec frein [mm² (AWG)]	4 x 240 (4	x 500 mcm)	4 x 240 (4 x 500 mcm)	
- Freinage ou régénération [mm² (AWG)]	2 x 185 (2	x 350 mcm)	2 x 185 (2 x 350 mcm)	
Nombre et taille de câbles maximum par phase (E	3h)		•	
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6	x 500 mcm)	6 x 240 (6 x 500 mcm)	
- Secteur et moteur avec frein [mm² (AWG)]	2 x 185 (2	x 350 mcm)	2 x 185 (2 x 350 mcm)	
- Répartition de la charge ou régénération [mm²	1 v 195 (1	x 350 mcm)	4 x 185 (4 x 350 mcm)	
(AWG)]	+ X 105 (+ :	x 550 mem)	X +) C61 X +	330 mem)
Fusibles secteur externes max. [A] ¹⁾	8	00	80	0
Perte de puissance estimée à 600 V [W] ^{2), 3)}	4989	6062	5419	6879
Perte de puissance estimée à 690 V [W] ^{2), 3)}	4920	5939	5332	6715
Rendement ³⁾	0,98		0,9	8
Fréquence de sortie [Hz]	0-	500	0-50	00
Arrêt surtempérature radiateur [° C (° F)]	110 (230)		110 (2	230)
Arrêt surtempérature carte de commande [° C			22.12	7.6\
(° F)]	80 (176)		80 (1	/0)
Arrêt surtempérature carte de puissance [° C (° F)]	85 (185)		85 (1	85)
Arrêt surtempérature carte de puissance du	05.4	(105)	05 /1	05)
ventilateur [° C (° F)]	85 ((185)	85 (1	03)
Arrêt surtempérature carte d'appel active [° C	OF /	(185)	85 (1	85)
(° F)]	85 ((185)	05 (1	0.5)

Tableau 7.9 Données électriques pour les boîtiers E1h/E3h, alimentation secteur 3 x 525-690 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N560		N630			
Charge normale/élevée	НО	NO	НО	NO		
(Surcharge élevée (HO) = 150 % du courant pendant						
60 s, surcharge normale (NO) = 110 % du courant						
pendant 60 s)						
Sortie d'arbre typique à 525 V [kW]	400	450	450	500		
Sortie d'arbre typique à 575 V [HP]	500	600	600	650		
Sortie d'arbre typique à 690 V [kW]	500	560	560	630		
Taille de boîtier	E1h/	E3h	E1h	/E3h		
Courant de sortie (triphasé)						
Continu (à 525 V) [A]	523	596	596	630		
Intermittent (surcharge 60 s) (à 525 V) [A]	785	656	894	693		
Continu (à 575/690 V) [A]	500	570	570	630		
Intermittent (surcharge 60 s) (à 575/690 V) [A]	750	627	855	693		
kVA continu à 525 V [kVA]	498	568	568	600		
kVA continu (à 575 V) [kVA]	498	568	568	627		
kVA continu (à 690 V) [kVA]	598	681	681	753		
Courant d'entrée maximal		•	•	•		
Continu (à 525 V) [A]	504	574	574	607		
Continu (à 575/690 V) [A]	482	549	549	607		
Nombre et taille de câbles maximum par phase (E1h)		•	•	•		
- Secteur et moteur sans frein [mm² (AWG)]	5 x 240 (5 x	500 mcm)	5 x 240 (5	x 500 mcm)		
- Secteur et moteur avec frein [mm² (AWG)]	4 x 240 (4 x	500 mcm)	4 x 240 (4 x 500 mcm)			
- Freinage ou régénération [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2	2 x 185 (2 x 350 mcm)		
Nombre et taille de câbles maximum par phase (E3h)			•			
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6 x	500 mcm)	6 x 240 (6 x 500 mcm)			
- Secteur et moteur avec frein [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2	x 350 mcm)		
- Répartition de la charge ou régénération [mm² (AWG)]	4 x 185 (4 x	350 mcm)	4 x 185 (4 x 350 mcm)			
Fusibles secteur externes max. [A] ¹⁾	80	0	8	00		
Perte de puissance estimée à 600 V [W] ^{2), 3)}	6833	8076	8069	9208		
Perte de puissance estimée à 690 V [W] ^{2), 3)}	6678	7852	7848	8921		
Rendement ³⁾	0,9	98	0	.98		
Fréquence de sortie [Hz]	0-5	00	0-	500		
Arrêt surtempérature radiateur [° C (° F)]	110 (230)	110	(230)		
Arrêt surtempérature carte de commande [° C (° F)]	80 (176)	80	(176)		
Arrêt surtempérature carte de puissance [° C (° F)]	85 (185)	85	(185)		
Arrêt surtempérature carte de puissance du ventilateur [° C (° F)]	85 (185)	85 (185)			
Arrêt surtempérature carte d'appel active [° C (° F)]	85 (*	185)	85 (185)			

Tableau 7.10 Données électriques pour les boîtiers E1h/E3h, alimentation secteur 3 x 525-690 V CA

- 1) Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.
- 2) La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energyefficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.
- 3) Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

VLT® AQUA Drive FC 202	N710		N80	00
Charge normale/élevée	НО	NO	НО	NO
(Surcharge élevée (HO) = 150 % du courant pendant 60 s,				
surcharge normale (NO) = 110 % du courant pendant				
60 s)				
Sortie d'arbre typique à 525 V [kW]	500	560	560	670
Sortie d'arbre typique à 575 V [HP]	650	750	750	950
Sortie d'arbre typique à 690 V [kW]	630	710	710	800
Taille de boîtier	E2h/	E4h	E2h/	E4h
Courant de sortie (triphasé)				
Continu (à 525 V) [A]	659	763	763	889
Intermittent (surcharge 60 s) (à 525 V) [A]	989	839	1145	978
Continu (à 575/690 V) [A]	630	730	730	850
Intermittent (surcharge 60 s) (à 575/690 V) [A]	945	803	1095	935
kVA continu à 525 V [kVA]	628	727	727	847
kVA continu (à 575 V) [kVA]	627	727	727	847
kVA continu (à 690 V) [kVA]	753	872	872	1016
Courant d'entrée maximal			•	
Continu (à 525 V) [A]	635	735	735	857
Continu (à 575/690 V) [A]	607	704	704	819
Nombre et taille de câbles maximum par phase (E2h)			1	
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6 x	500 mcm)	6 x 240 (6 x 500 mcm)	
- Secteur et moteur avec frein [mm² (AWG)]	5 x 240 (5 x	500 mcm)	5 x 240 (5 x 500 mcm)	
- Freinage ou régénération [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2 x 350 mcm)	
Nombre et taille de câbles maximum par phase (E4h)				
- Secteur et moteur sans frein [mm² (AWG)]	6 x 240 (6 x	500 mcm)	6 x 240 (6 x	500 mcm)
- Secteur et moteur avec frein [mm² (AWG)]	2 x 185 (2 x	350 mcm)	2 x 185 (2 x	350 mcm)
- Répartition de la charge ou régénération [mm² (AWG)]	4 x 185 (4 x	350 mcm)	4 x 185 (4 x	350 mcm)
Fusibles secteur externes max. [A] ¹⁾	120	00	120	00
Perte de puissance estimée à 600 V [W] ^{2), 3)}	8543	10346	10319	12723
Perte de puissance estimée à 690 V [W] ^{2), 3)}	8363	10066	10060	12321
Rendement ³⁾	0,9	98	0,9	8
Fréquence de sortie [Hz]	0-5	00	0-5	00
Arrêt surtempérature radiateur [° C (° F)]	110 (230)	110 (230)
Arrêt surtempérature carte de commande [° C (° F)]	80 (1	176)	80 (1	76)
Arrêt surtempérature carte de puissance [° C (° F)]	85 (1	85)	85 (1	85)
Arrêt surtempérature carte de puissance du ventilateur	07.15	105)	07.1	05)
10 C (0 E)]	85 (185)		85 (1	וכא
[° C (° F)]	05 (1	103)		,

Tableau 7.11 Données électriques pour les boîtiers E2h/E4h, alimentation secteur 3 x 525-690 V CA

7

¹⁾ Pour les calibres des fusibles, voir chapitre 10.5 Fusibles et disjoncteurs.

²⁾ La perte de puissance typique, mesurée dans des conditions normales, doit être de ± 15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

³⁾ Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour la classe d'efficacité énergétique, voir le chapitre 7.5 Conditions ambiantes.. Pour connaître les pertes de charge partielles, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

7.3 Alimentation secteur

Alimentation secteur (L1, L2, L3)

Tension d'alimentation 380–480 V \pm 10 %, 525–690 V \pm 10 %

Tension secteur faible/chute de tension secteur :

En cas de tension secteur basse ou de chute de la tension secteur, le variateur continue de fonctionner jusqu'à ce que la tension présente sur le circuit intermédiaire descende sous le seuil d'arrêt minimum, qui correspond généralement à 15 % de moins que la tension nominale d'alimentation la plus basse du variateur. Mise sous tension et couple complet ne sont pas envisageables à une tension secteur inférieure à 10 % de la tension nominale d'alimentation secteur du variateur.

Fréquence d'alimentation	50/60 Hz ±5 %
Écart temporaire maximum entre phases secteur	3,0 % de la tension nominale d'alimentation 1)
Facteur de puissance réelle (λ)	≥ 0,9 à charge nominale
Facteur de puissance de déphasage (cos Φ) à proximité de l'unité	(>0,98)
Commutation sur l'entrée d'alimentation L1, L2, L3 (mises sous tension)	Maximum 1 fois/2 minutes
Environnement conforme à la norme EN 60664-1	Catégorie de surtension III/degré de pollution 2

L'utilisation du variateur convient sur un circuit capable de délivrer un courant nominal de court-circuit (SCCR) allant jusqu'à 100 kA à 480/600 V.

1) Les calculs reposent sur la norme UL/CEI 61800-3.

7.4 Puissance et données du moteur

Puissance du moteur (U, V, W)

* * * *	
Tension de sortie	0-100 % de la tension d'alimentation
fréquence sortie	0-590 Hz ¹⁾
Fréquence de sortie en mode Flux	0-300 Hz
Commutation sur la sortie	Illimitée
Temps de rampe	0,01-3 600 s

¹⁾ Dépend de la tension et de la puissance

Caractéristiques de couple

	150 % pendant 60 s''' 2
Surcouple (couple constant) Maximum 15	150 % pendant 60 s ^{1), 2)}

- 1) Le pourcentage se réfère au courant nominal du variateur.
- 2) Une fois toutes les 10 minutes.

7.5 Conditions ambiantes

Environne	nmont
	יוובוונ

Boîtier D1h/D2h/D5h/D6h/D7h/D8h/E1h/E2h	IP21/Type 1, IP54/Type 12
Boîtier D3h/D4h/E3h/E4h	IP20/Châssis
Essai de vibration (standard/renforcé)	0,7 g/1,0 g
Humidité relative 5–95 % (CEI 721-3-3 ; cl	asse 3K3 (sans condensation) pendant le fonctionnement)
Environnement agressif (CEI 60068-2-43) test H ₂ S	Classe Kd
Gaz agressifs (CEI 60721-3-3)	Classe 3C3
Méthode d'essai conforme à CEI 60068-2-43	H₂S (10 jours)
Température ambiante (en mode de commutation SFAVM)	
- avec déclassement	Maximum 55 °C (131 °F) ¹⁾
- avec puissance de sortie totale des moteurs EFF2 typiques (jusqu'	à 90 % du courant de sortie) Maximum 50 °C (122 °F) ¹⁾
- avec courant de sortie FC continu max.	Maximum 45 °C (113 °F) ¹⁾
Température ambiante min. en pleine exploitation	0 °C (32 °F)
Température ambiante min. en exploitation réduite	-10 °C (14 °F)
Température durant le stockage/transport	-25 à +65/70 °C (13 à 149/158 °F)
Altitude max. au-dessus du niveau de la mer sans déclassement	1 000 m (3 281 pi)

Danfvis

Altitude max. au-dessus du niveau de la mer avec déclassement	3 000 m (9 842 pi)
1) Pour plus d'informations sur le déclassement, voir le chapitre 9.6 Déclassement.	
Normes CEM, Émission	EN 61800-3
Normes CEM, Immunité	EN 61800-3
Classe de rendement énergétique ¹⁾	IE2

- 1) Déterminée d'après la norme EN 50598-2 à :
 - Charge nominale
 - 90 % de la fréquence nominale
 - Fréquence de commutation au réglage d'usine
 - Type de modulation au réglage d'usine

7.6 Spécifications du câble

Longueurs et sections des câbles de commande¹⁾

Longueur max. du câble du moteur, blindé/armé	150 m (492 pi)
Longueur max. du câble du moteur, non blindé/non armé	300 m (984 pi)
Section maximum pour moteur, secteur, répartition de la charge et frein	Consulter le <i>chapitre 7 Spécifications</i> .
Section max. des bornes de commande, fil rigide	1,5 mm²/16 AWG (2 x 0,75 mm²)
Section max. des bornes de commande, fil souple	1 mm²/18 AWG
Section max. des bornes de commande, fil avec noyau blindé	0,5 mm²/20 AWG
Section minimale des bornes de commande	0,25 mm²/23 AWG

¹⁾ Pour connaître les câbles de puissance, voir le chapitre 7.1 Données électriques, 380-480 V et le chapitre 7.2 Données électriques, 525-690 V .

7.7 Entrée/sortie de commande et données de commande

Entrées digitales			

Entrées digitales programmables	4 (6)
N° de borne	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33
Logique	PNP ou NPN
Niveau de tension	0-24 V CC
Niveau de tension, 0 logique PNP	< 5 V CC
Niveau de tension, 1 logique PNP	> 10 V CC
Niveau de tension, 0 logique NPN	> 19 V CC
Niveau de tension, 1 logique NPN	< 14 V CC
Tension maximale sur l'entrée	28 V CC
Résistance d'entrée, R _i	Environ 4 kΩ

Toutes les entrées digitales sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

1) Les bornes 27 et 29 peuvent aussi être programmées comme sorties.

Entrées analogiques

Nombre d'entrées analogiques	2
N° de borne	53, 54
Modes	Tension ou courant
Sélection du mode	Commutateurs A53 et A54
Mode tension	Commutateur A53/A54 = (U)
Niveau de tension	-10 à +10 V (échelonnable)
Résistance d'entrée, R _i	Environ 10 kΩ
Tension maximale	± 20 V
Mode courant	Commutateur $A53/A54 = (I)$
Niveau de courant	0/4 à 20 mA (échelonnable)
Résistance d'entrée, R _i	Environ 200 Ω
Courant maximal	30 mA
Résolution des entrées analogiques	10 bits (signe +)

Précision des entrées analogiques

Erreur max. 0,5 % de l'échelle totale

Largeur de bande

100 Hz

Les entrées analogiques sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

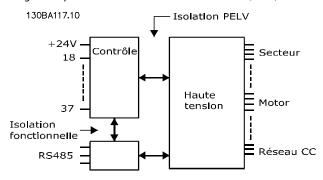


Illustration 7.1 Isolation PELV

Entrées impulsions

Entrées impulsions programmables	2
Nombre de bornes impulsion	29, 33
Fréquence maximale aux bornes 29, 33 (activation push-pull)	110 kHz
Fréquence maximale aux bornes 29, 33 (collecteur ouvert)	5 kHz
Fréquence minimale aux bornes 29, 33	4 Hz
Niveau de tension	Voir le chapitre 7.7.1 Entrées digitales
Tension maximale sur l'entrée	28 V CC
Résistance d'entrée, R _i	Environ 4 kΩ
Précision d'entrée d'impulsion (0,1-1 kHz)	Erreur maximale : 0,1 % de l'échelle totale

Sortie analogique

Sortie analogique	
Nombre de sorties analogiques programmables	1
N° de borne	42
Plage de courant de la sortie analogique	0/4–20 mA
Résistance max. à la masse de la sortie analogique	500 Ω
Précision de la sortie analogique	Erreur maximale : 0,8 % de l'échelle totale
Résolution de la sortie analogique	8 bits

La sortie analogique est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Carte de commande, communication série RS485

N° de borne	68 (P, TX+, RX+), 69 (N, TX-, RX-)
Borne n° 61	Commun des bornes 68 et 69

Le circuit de communication série RS485 est séparé fonctionnellement des autres circuits centraux et isolé galvaniquement de la tension d'alimentation (PELV).

Sortie digitale

Sorties digitales/impulsionnelles programmables	2
N° de borne	27, 29 ¹⁾
Niveau de tension à la sortie digitale/en fréquence	0-24 V
Courant de sortie max. (récepteur ou source)	40 mA
Charge max. à la sortie en fréquence	1 kΩ
Charge capacitive max. à la sortie en fréquence	10 nF
Fréquence de sortie min. à la sortie en fréquence	0 Hz
Fréquence de sortie max. à la sortie en fréquence	32 kHz
Précision de la sortie en fréquence	Erreur maximale : 0,1 % de l'échelle totale
Résolution des sorties en fréquence	12 bits

¹⁾ Les bornes 27 et 29 peuvent aussi être programmées comme entrées.

La sortie digitale est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Carta	40	commande	cortio	24 1/ 0	_
(arte	ae	commande	sortie	74 V ((

N° de borne	12, 13
Charge maximale	200 mA

L'alimentation 24 V CC est isolée galvaniquement de la tension d'alimentation (PELV) tout en ayant le même potentiel que les entrées et sorties analogiques et digitales.

Sorties relais

Sorties relais	
Sorties relais programmables	2
Section max. des bornes de relais	2,5 mm² (12 AWG)
Section min. des bornes de relais	0,2 mm² (30 AWG)
Longueur de fil dénudé	8 mm (0,3 po)
N° de borne relais 01	1-3 (interruption), 1-2 (établissement)
Charge maximale sur les bornes (CA-1) ¹⁾ sur 1-2 (NO) (charge résistive) ^{2), 3)}	400 V CA, 2 A
Charge maximale sur les bornes (CA-15) ¹⁾ sur 1-2 (NO) (charge inductive à co	osφ 0,4) 240 V CA, 0,2 A
Charge maximale sur les bornes (CC-1) ¹⁾ sur 1-2 (NO) (charge résistive)	80 V CC, 2 A
Charge maximale sur les bornes (CC-13) ¹⁾ sur 1-2 (NO) (charge inductive)	24 V CC, 0,1 A
Charge maximale sur les bornes (CA-1) ¹⁾ sur 1-3 (NF) (charge résistive)	240 V CA, 2 A
Charge maximale sur les bornes (CA-15) ¹⁾ sur 1-3 (NF) (charge inductive à co	osφ 0,4) 240 V CA, 0,2 A
Charge maximale sur les bornes (CC-1) ¹⁾ sur 1-3 (NF) (charge résistive)	50 V CC, 2 A
Charge maximale sur les bornes (CC-13) ¹⁾ sur 1-3 (NF) (charge inductive)	24 V CC, 0,1 A
Charge minimale sur les bornes sur 1-3 (NF), 1-2 (NO)	24 V CC 10 mA, 24 V CA 2 mA
Environnement conforme à la norme EN 60664-1	Catégorie de surtension III/degré de pollution 2
N° de borne relais 02	4-6 (interruption), 4-5 (établissement)
Charge maximale sur les bornes (CA-1) ¹⁾ sur 4-5 (NO) (charge résistive) ^{2), 3)}	400 V CA, 2 A
Charge maximale sur les bornes (CA-15) ¹⁾ sur 4-5 (NO) (charge inductive à c	osφ 0,4) 240 V CA, 0,2 A
Charge maximale sur les bornes (CC-1) ¹⁾ sur 4-5 (NO) (charge résistive)	80 V CC, 2 A
Charge maximale sur les bornes (CC-13) ¹⁾ sur 4-5 (NO) (charge inductive)	24 V CC, 0,1 A
Charge maximale sur les bornes (CA-1) ¹⁾ sur 4-6 (NF) (charge résistive)	240 V CA, 2 A
Charge maximale sur les bornes (CA-15) ¹⁾ sur 4-6 (NF) (charge inductive à co	osφ 0,4) 240 V CA, 0,2 A
Charge maximale sur les bornes (CC-1) ¹⁾ sur 4-6 (NF) (charge résistive)	50 V CC, 2 A
Charge maximale sur les bornes (CC-13) ¹⁾ sur 4-6 (NF) (charge inductive)	24 V CC, 0,1 A
Charge minimale sur les bornes sur 4-6 (NF), 4-5 (NO)	24 V CC 10 mA, 24 V CA 2 mA
Environnement conforme à la norme EN 60664-1	Catégorie de surtension III/degré de pollution 2

Les contacts de relais sont isolés galvaniquement du reste du circuit par une isolation renforcée (PELV).

- 1) CEI 60947 parties 4 et 5.
- 2) Catégorie de surtension II.
- 3) Applications UL 300 V CA 2 A.

Carte de commande, sortie +10 V CC

N° de borne	50
Tension de sortie	10,5 V ±0,5 V
Charge maximale	25 mA

L'alimentation 10 V CC est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Caractéristiques de contrôle

Résolution de fréquence de sortie à 0-1 000 Hz	± 0,003 Hz
Temps de réponse système (bornes 18, 19, 27, 29, 32, 33)	≤ 2 m/s
Plage de commande de vitesse (boucle ouverte)	1:100 de la vitesse synchrone
Précision de vitesse (boucle ouverte)	30-4 000 tr/min : erreur maximum de ± 8 tr/min

Toutes les caractéristiques de contrôle sont basées sur un moteur asynchrone 4 pôles.

Performance de la carte de commande

Intervalle de balayage	5 M/S

Carte de commande, communication série USB

Norme USB	1.1 (pleine vitesse)
Fiche USB	Fiche dispositif USB de type B

AVIS!

La connexion au PC est réalisée via un câble USB standard hôte/dispositif.

La connexion USB est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension. La connexion USB n'est pas isolée galvaniquement de la terre de protection. Utiliser uniquement un ordinateur portable ou de bureau isolé en tant que connexion au connecteur USB sur le variateur ou un câble/connecteur USB isolé.

7.8 Poids des boîtiers

Boîtier	380-480/500 V	525-690 V
D1h	62 (137)	62 (137)
D2h	125 (276)	125 (276)
D3h	62 (137)	62 (137)
	108 (238) ¹⁾	108 (238) ¹⁾
D4h	125 (276)	125 (276)
	179 (395) ¹⁾	179 (395) ¹⁾
D5h	99 (218)	99 (218)
D6h	128 (282)	128 (282)
D7h	185 (408)	185 (408)
D8h	232 (512)	232 (512)

Tableau 7.12 Poids des boîtiers D1h-D8h, kg (lb)

1) Avec répartition de la charge et bornes régénératrices en option.

Boîtier	380-480/500 V	525-690 V
E1h	295 (650)	295 (650)
E2h	318 (700)	318 (700)
E3h	272 (600)	272 (600)
E4h	295 (650)	295 (650)

Tableau 7.13 Poids des boîtiers E1h-E4h, kg (lb)

8 Dimensions extérieures et des bornes

8.1 Dimensions extérieures et des bornes D1h

8.1.1 Dimensions extérieures D1h

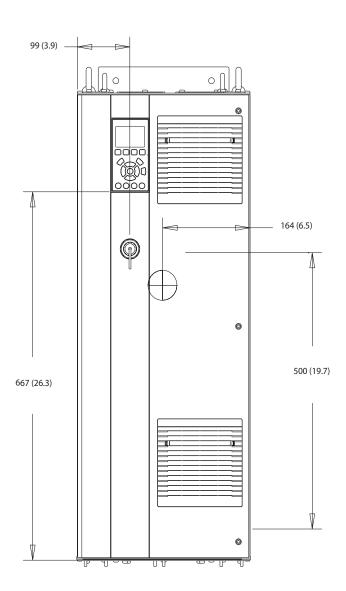


Illustration 8.1 Vue frontale du boîtier D1h

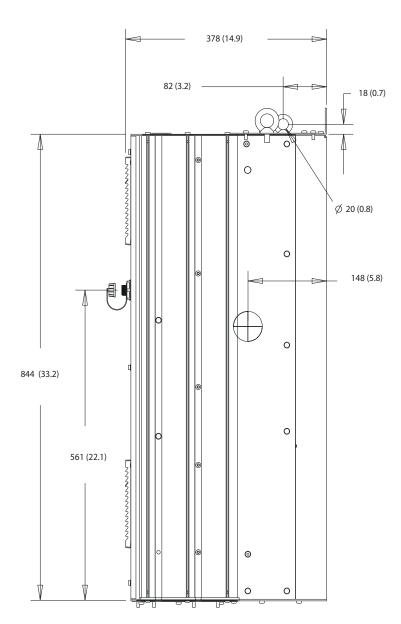
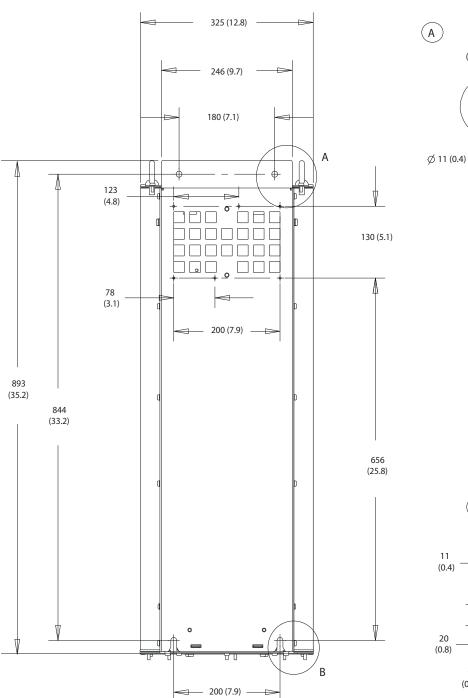
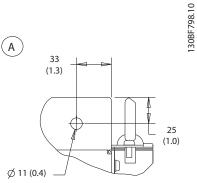




Illustration 8.2 Vue latérale du boîtier D1h

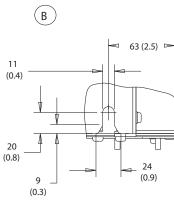


Illustration 8.3 Vue arrière du boîtier D1h

Q

Danfoss

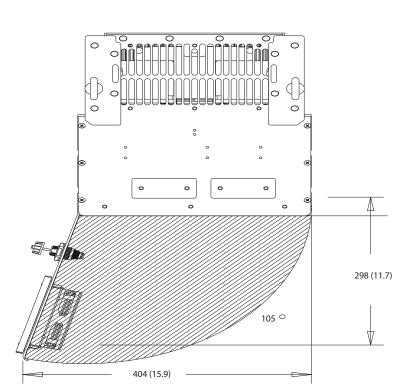


Illustration 8.4 Espace pour la porte du boîtier D1h

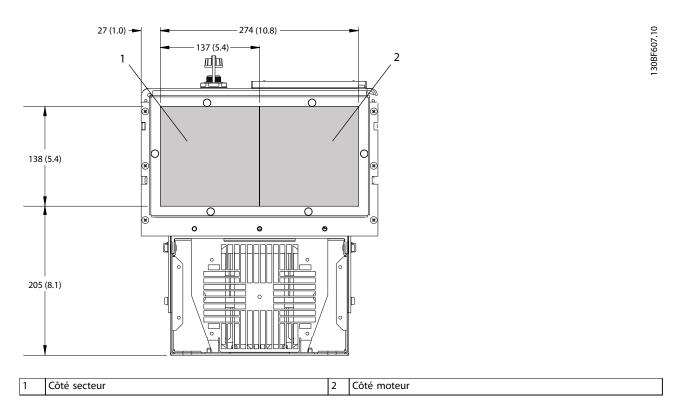
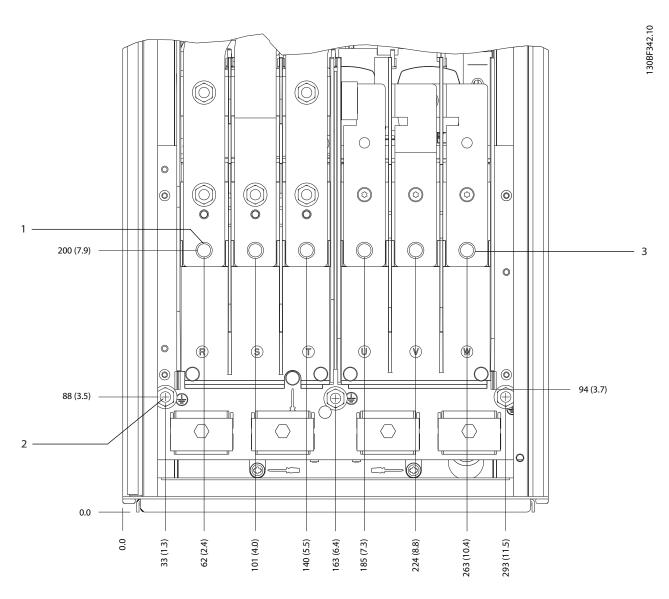



Illustration 8.5 Dimensions de la plaque presse-étoupe pour les boîtiers D1h

60

8.1.2 Dimensions des bornes D1h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de mise à la terre	-	-

Illustration 8.6 Dimensions des bornes D1h (vue frontale)

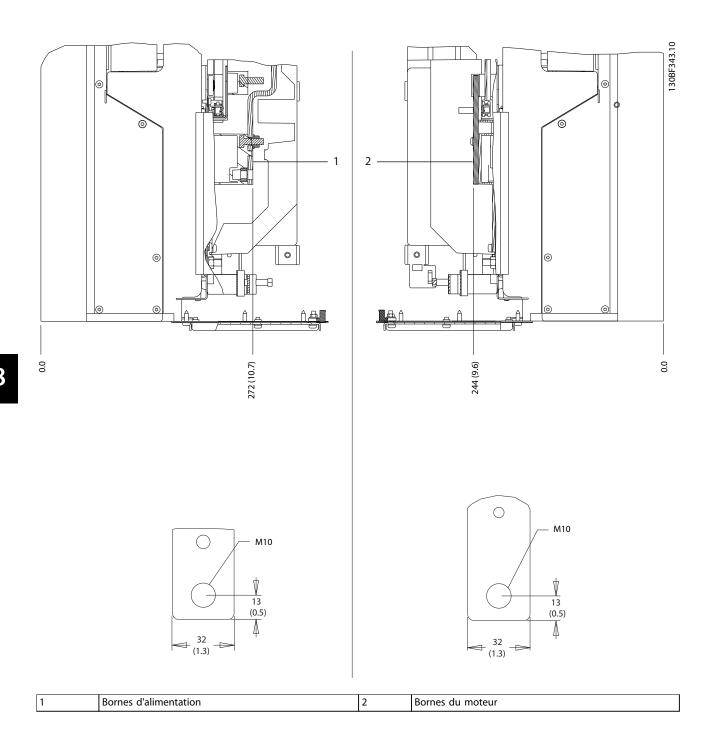


Illustration 8.7 Dimensions des bornes D1h (vues latérales)

62

8.2 Dimensions extérieures et des bornes D2h

8.2.1 Dimensions extérieures D2h

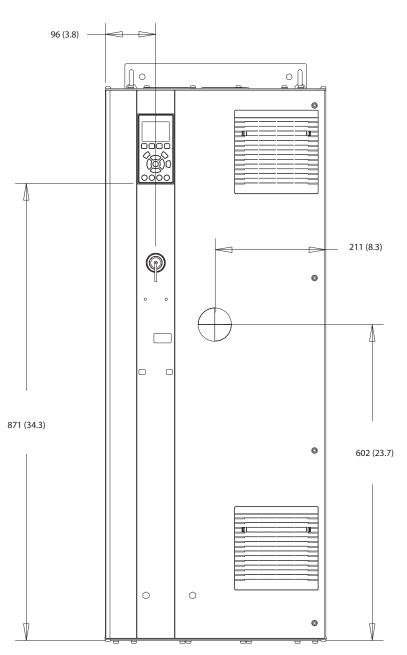


Illustration 8.8 Vue frontale du boîtier D2h

Danfoss

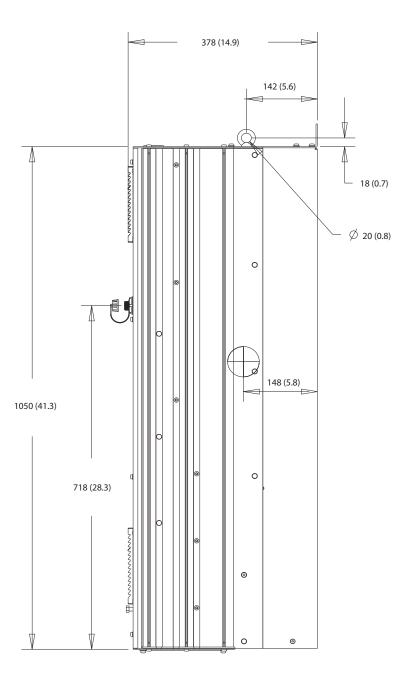
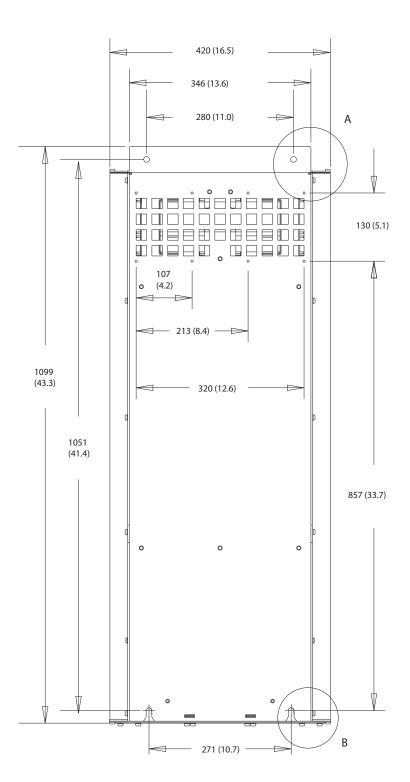
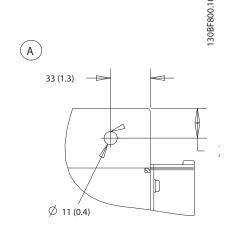




Illustration 8.9 Vue latérale du boîtier D2h

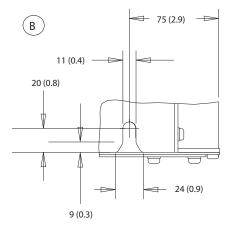


Illustration 8.10 Vue arrière du boîtier D2h

R

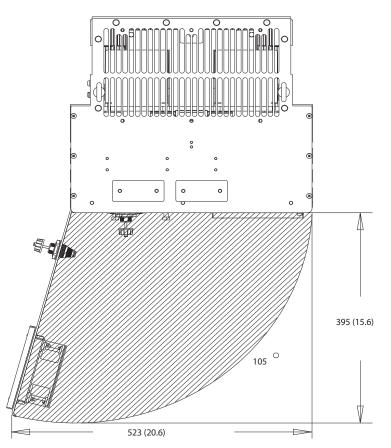


Illustration 8.11 Espace pour la porte du boîtier D2h

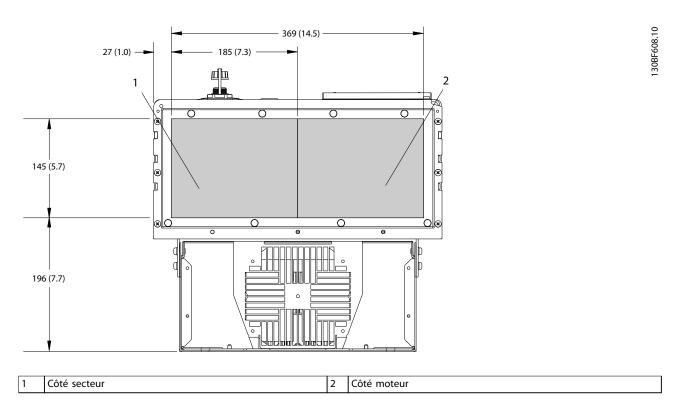
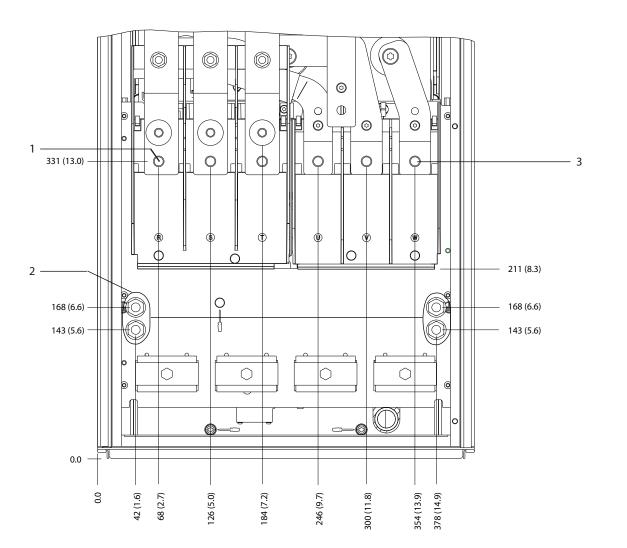
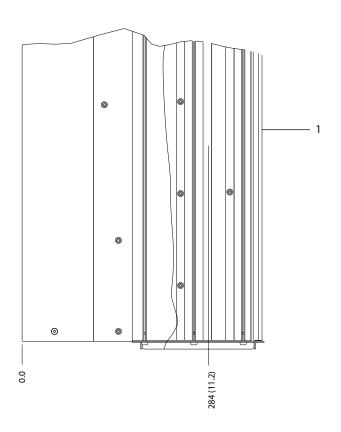
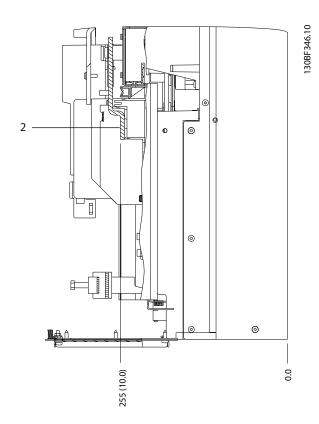
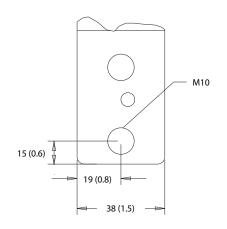



Illustration 8.12 Dimensions de la plaque presse-étoupe pour les boîtiers D2h


66


8.2.2 Dimensions des bornes D2h



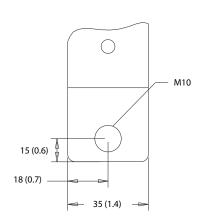

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de mise à la terre	-	-

Illustration 8.13 Dimensions des bornes D2h (vue frontale)

1	Bornes d'alimentation	2	Bornes du moteur

Illustration 8.14 Dimensions des bornes D2h (vues latérales)

8.3 Dimensions extérieures et des bornes D3h

8.3.1 Dimensions extérieures D3h

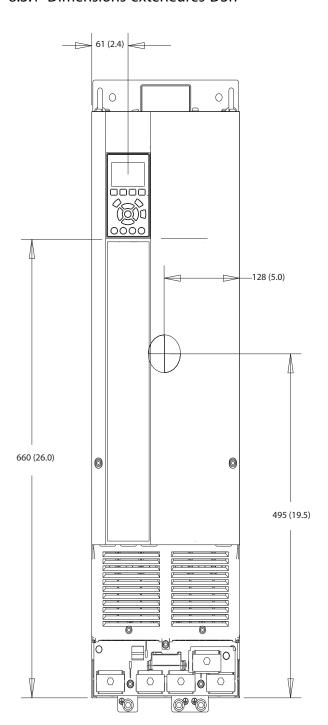


Illustration 8.15 Vue frontale du boîtier D3h

Q

Danfvss

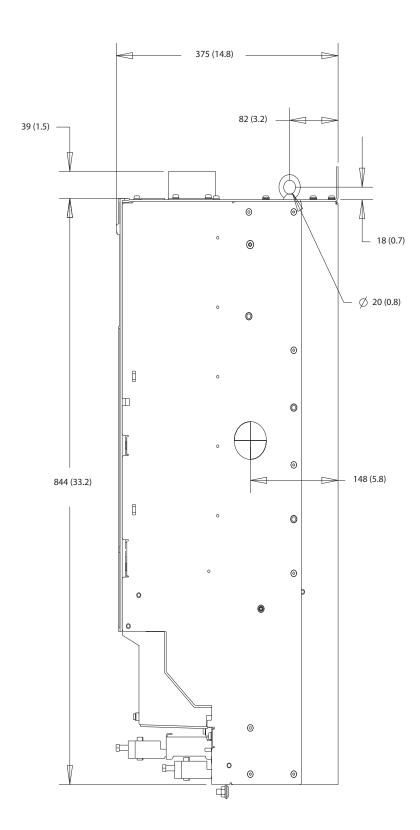


Illustration 8.16 Vue latérale du boîtier D3h

130BF802.10

25 (1.0)

□ 25 (1.0)

- M10

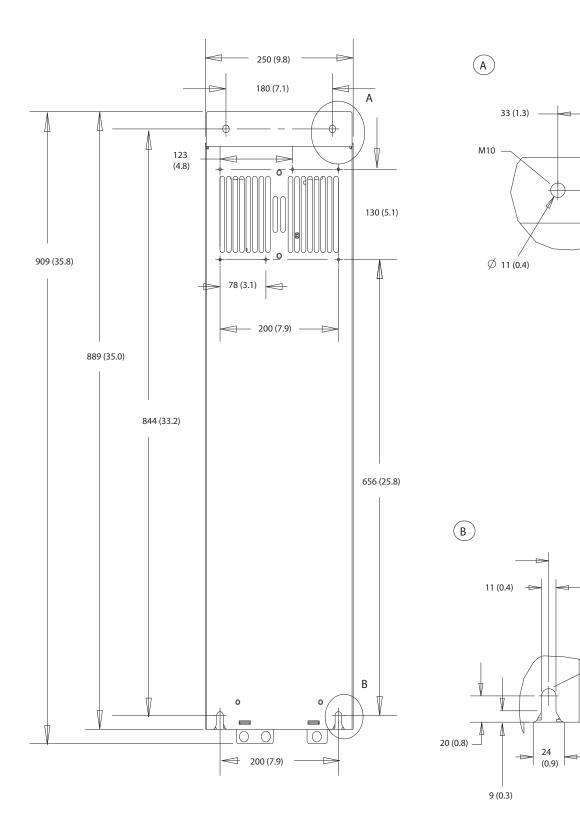
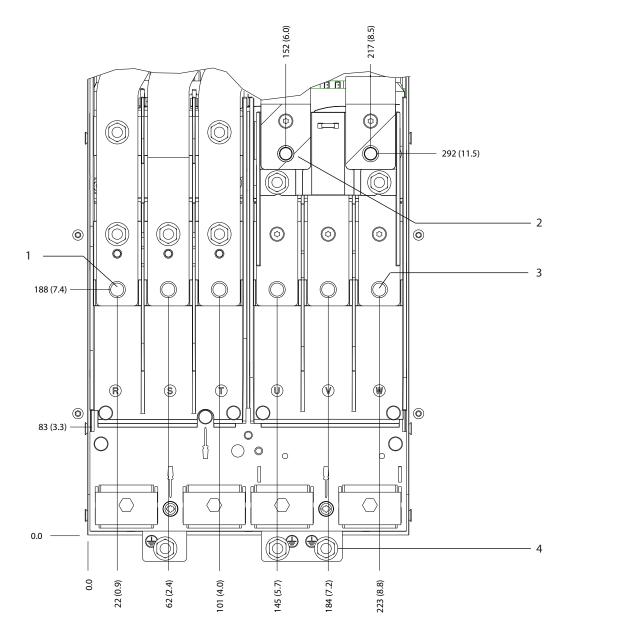
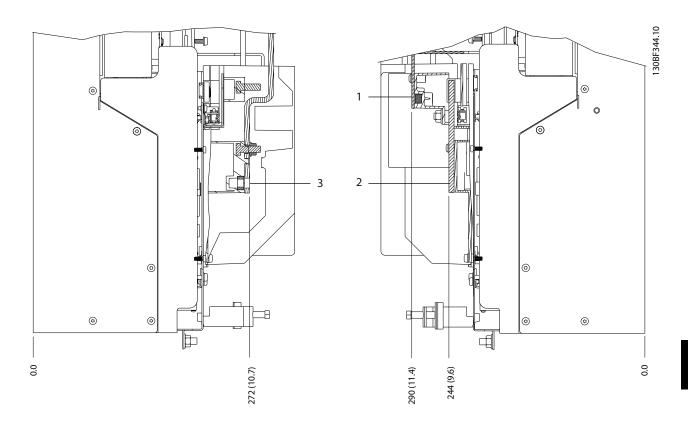



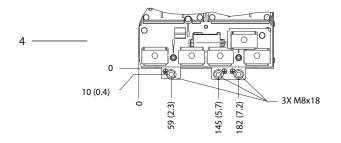
Illustration 8.17 Vue arrière du boîtier D3h

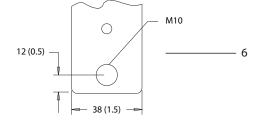
Q

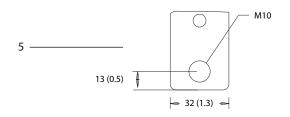
Danfvss

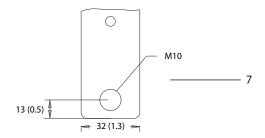
8.3.2 Dimensions des bornes D3h




1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	4	Bornes de mise à la terre


Illustration 8.18 Dimensions des bornes D3h (vue frontale)





1 et 6	Bornes de freinage ou régénératrices inférieures	3 et 5	Bornes d'alimentation
2 et 7	Bornes du moteur	4	Bornes de mise à la terre

Illustration 8.19 Dimensions des bornes D3h (vues latérales)

8.4 Dimensions extérieures et des bornes D4h

8.4.1 Dimensions du boîtier D4h

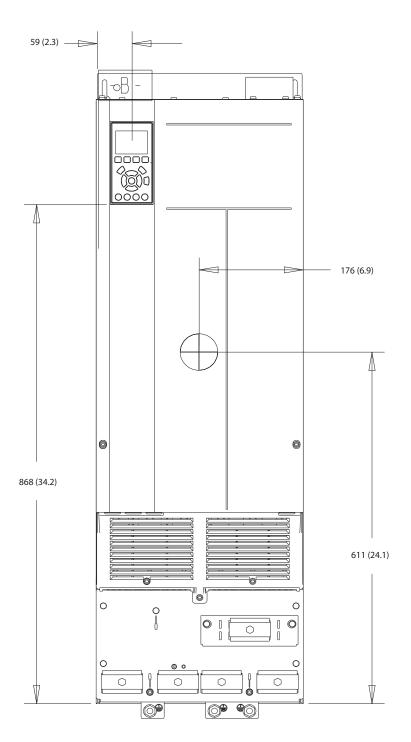


Illustration 8.20 Vue frontale du boîtier D4h



Illustration 8.21 Dimensions latérales du boîtier D4h

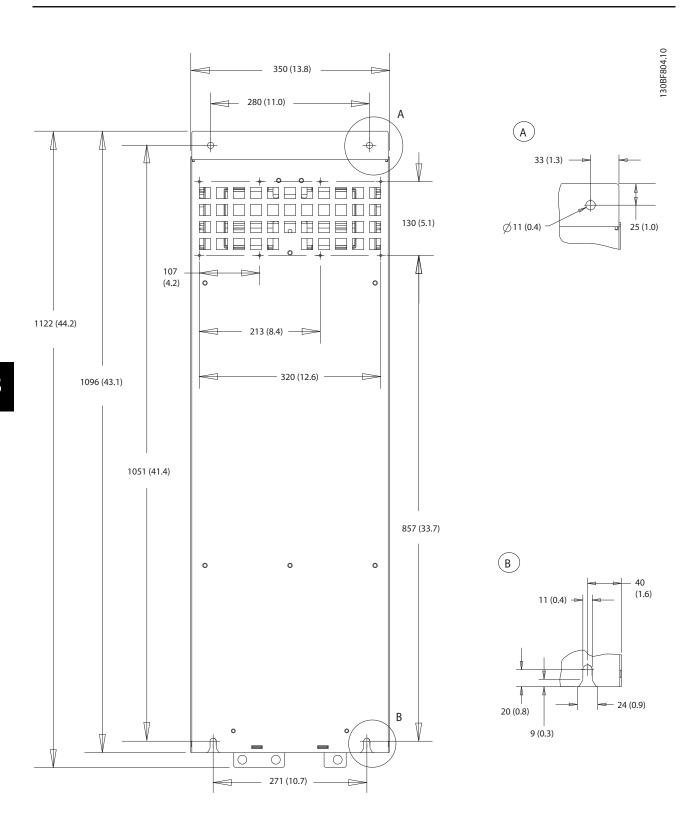
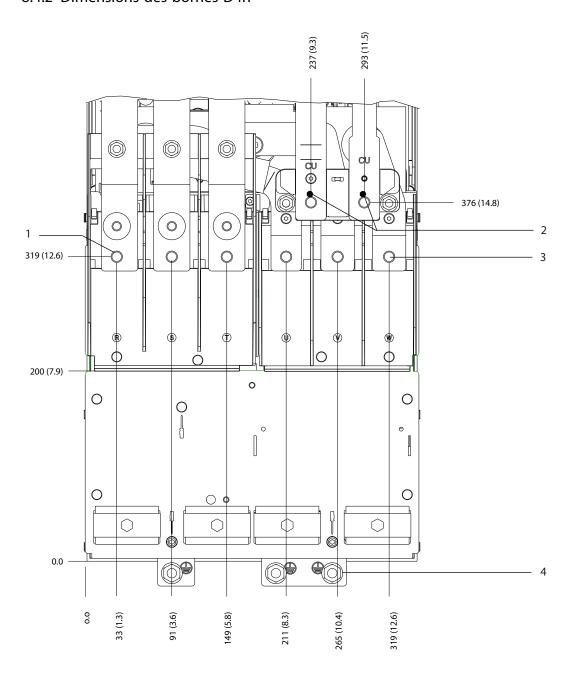
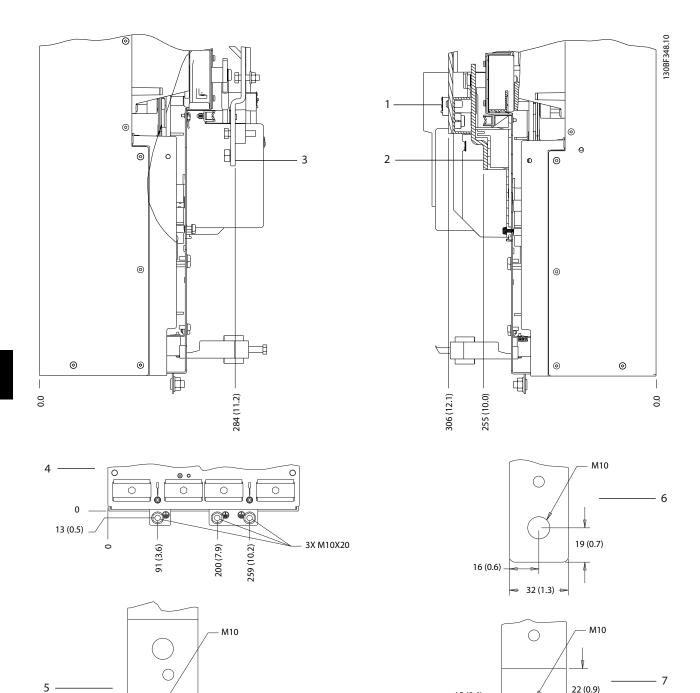



Illustration 8.22 Dimensions arrière du boîtier D4h

130BF347.10


8.4.2 Dimensions des bornes D4h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	4	Bornes de mise à la terre

Illustration 8.23 Dimensions des bornes D4h (vue frontale)

1 et 6	Bornes de freinage ou régénératrices	3 et 5	Bornes d'alimentation
2 et 7	Bornes du moteur	4	Bornes de mise à la terre

Illustration 8.24 Dimensions des bornes D4h (vues latérales)

38 (1.5)

|5 [0.6]

19 (0.8)

22 (0.9)

15 (0.6)

18 (0.7)

→ 35 (1.4) →

8.5 Dimensions extérieures et des bornes D5h

8.5.1 Dimensions extérieures D5h

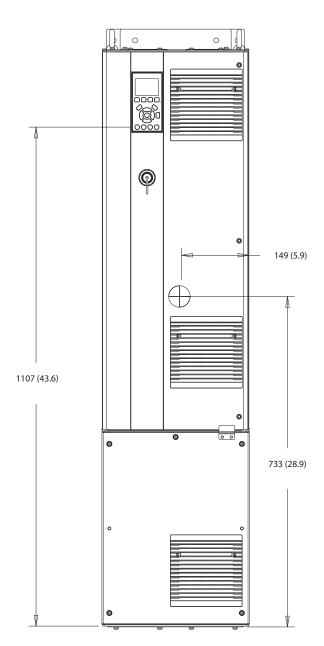


Illustration 8.25 Vue frontale du boîtier D5h

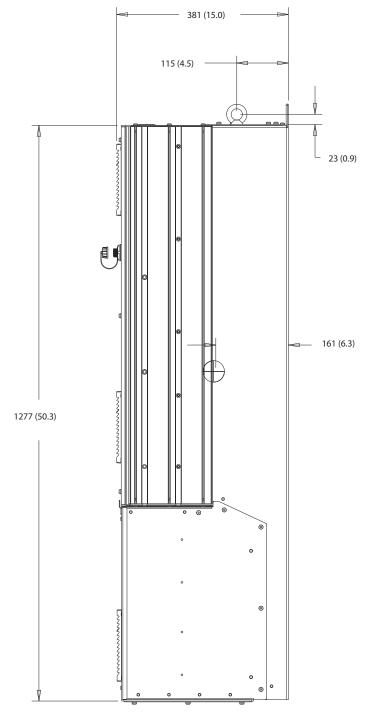
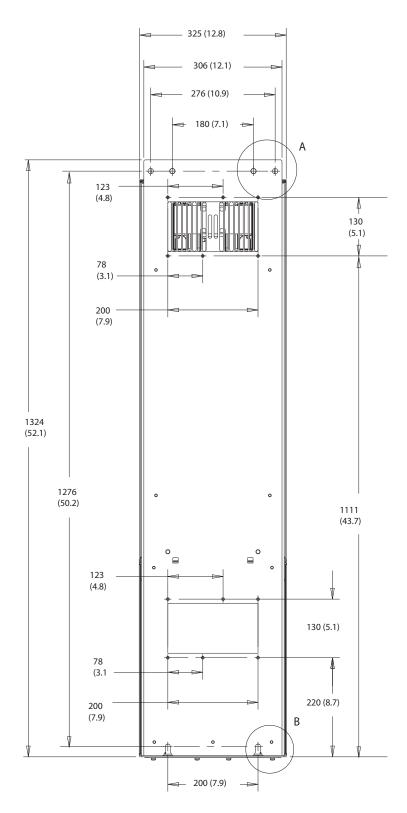
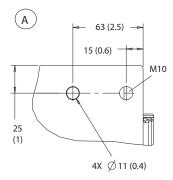




Illustration 8.26 Vue latérale du boîtier D5h

130BF806.10

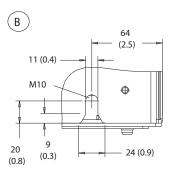


Illustration 8.27 Vue arrière du boîtier D5h

U

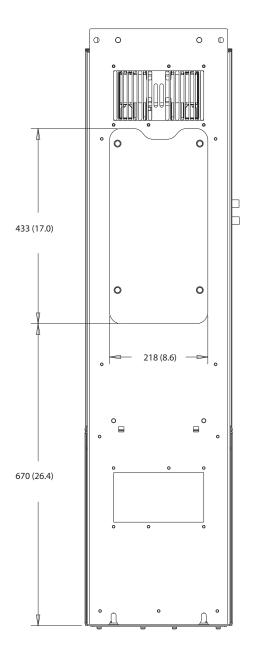


Illustration 8.28 Dimensions de l'accès au dissipateur de chaleur des boîtiers D5h

Illustration 8.29 Espace pour la porte du boîtier D5h

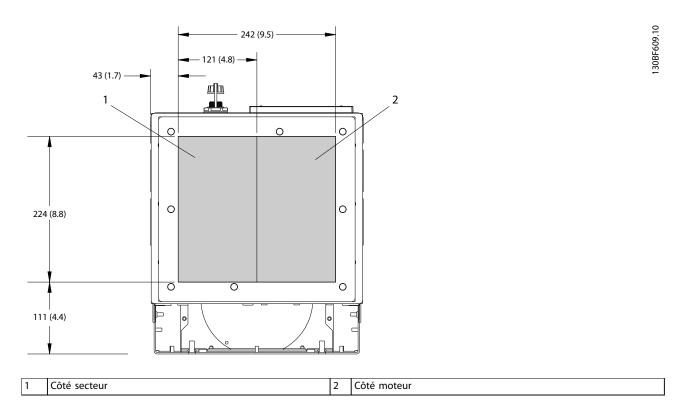
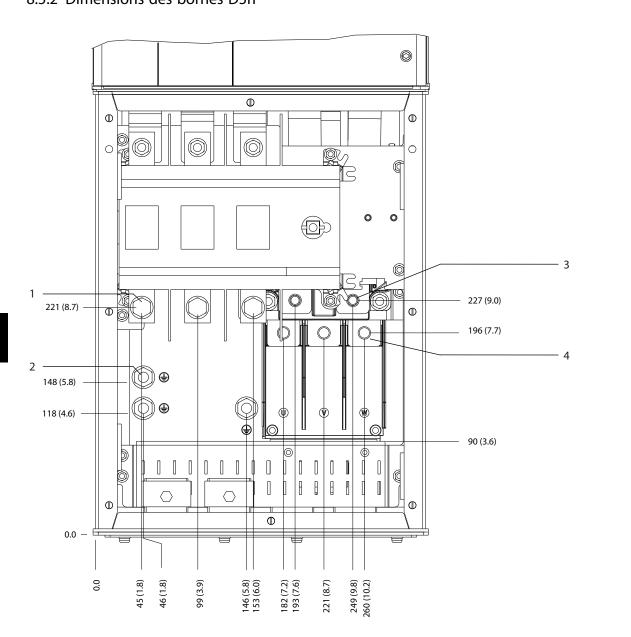
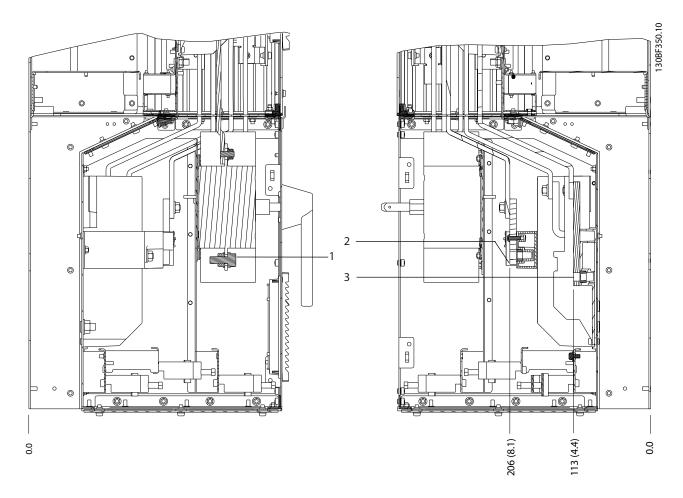



Illustration 8.30 Dimensions de la plaque presse-étoupe pour les boîtiers D5h

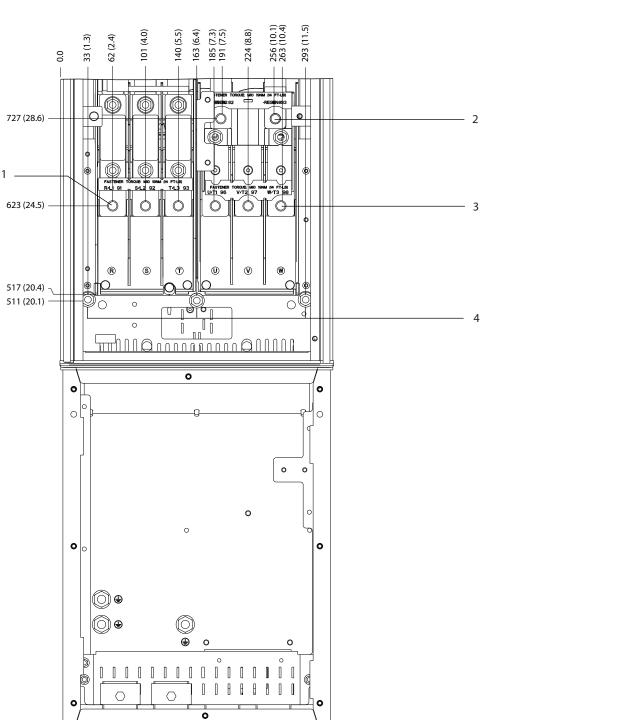
Danfvis

8.5.2 Dimensions des bornes D5h

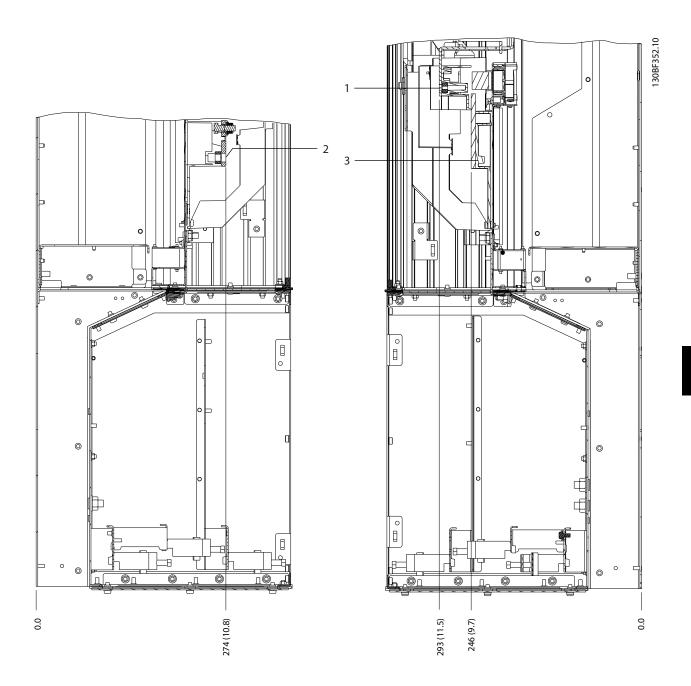


1	Bornes d'alimentation	3	Bornes de freinage
2	Bornes de mise à la terre	4	Bornes du moteur

Illustration 8.31 Dimensions des bornes D5h avec option sectionneur (vue frontale)



1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	-	-


Illustration 8.32 Dimensions des bornes D5h avec option sectionneur (vues latérales)

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	4	Bornes de mise à la terre

Illustration 8.33 Dimensions des bornes D5h avec option freinage (vue frontale)

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	-	-

Illustration 8.34 Dimensions des bornes D5h avec option freinage (vues latérales)

<u>Danfoss</u>

Dimensions extérieures et d...

8.6 Dimensions extérieures et des bornes D6h

8.6.1 Dimensions extérieures D6h



Illustration 8.35 Vue frontale du boîtier D6h

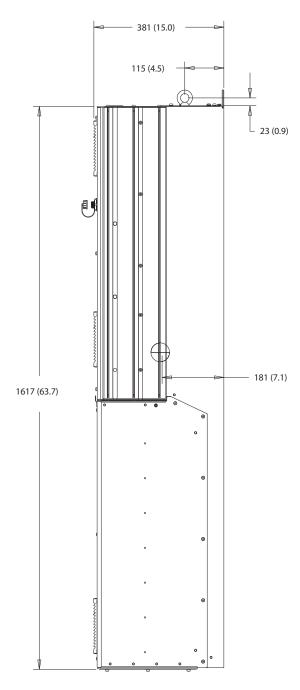
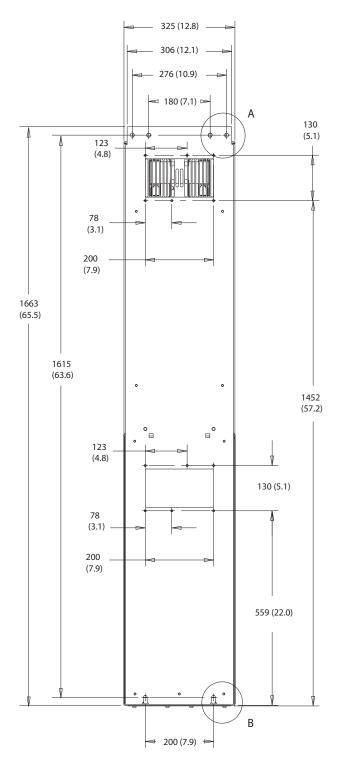
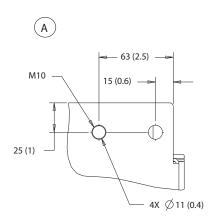




Illustration 8.36 Vue latérale du boîtier D6h

<u>Danfoss</u>

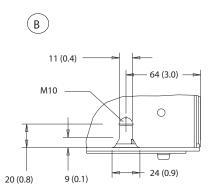


Illustration 8.37 Vue arrière du boîtier D6h

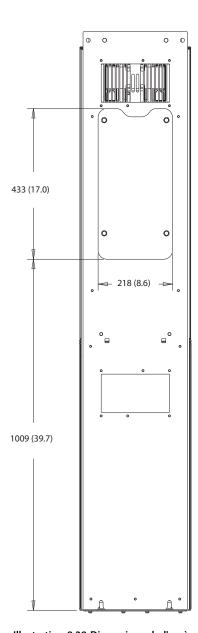


Illustration 8.38 Dimensions de l'accès au dissipateur de chaleur des boîtiers D6h

Danfvss

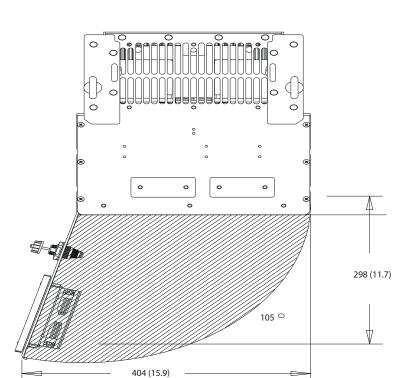


Illustration 8.39 Espace pour la porte du boîtier D6h

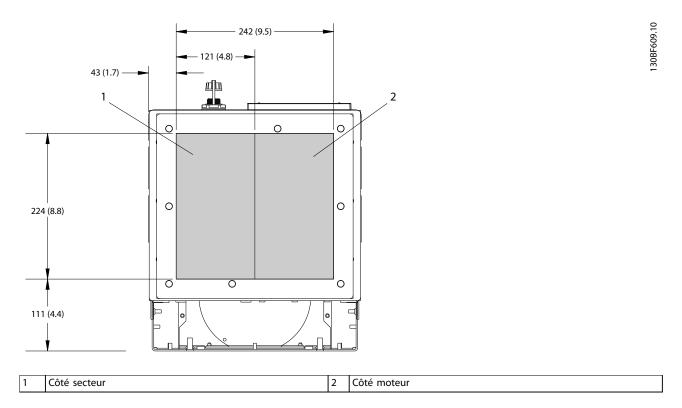
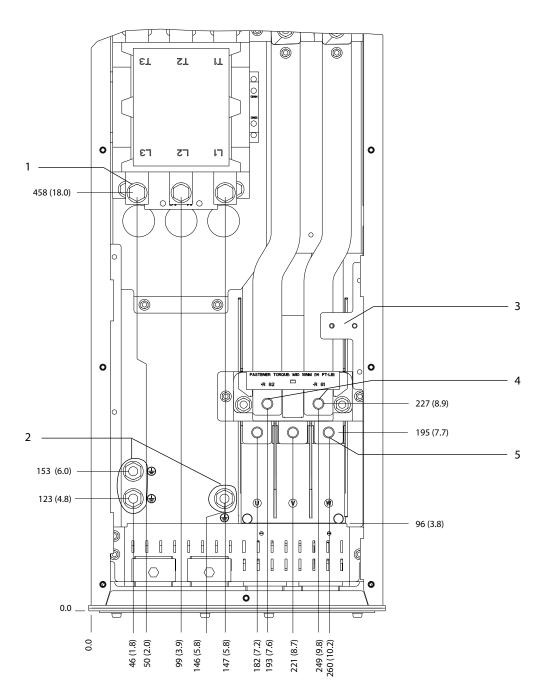
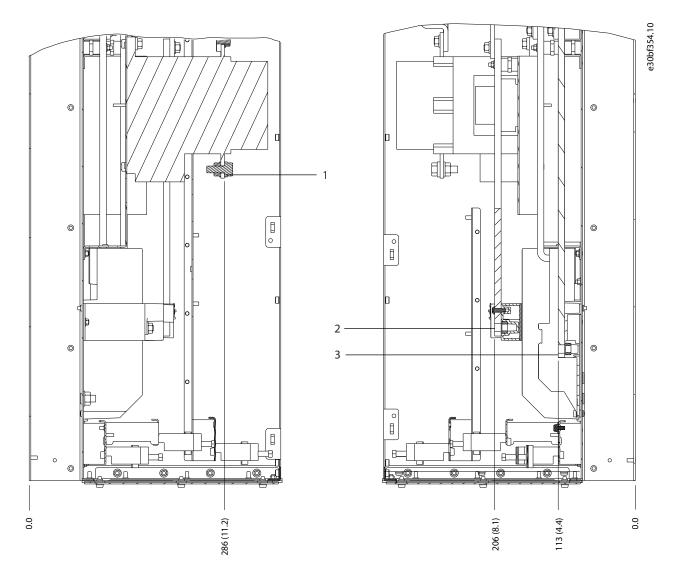



Illustration 8.40 Dimensions de la plaque presse-étoupe pour les boîtiers D6h

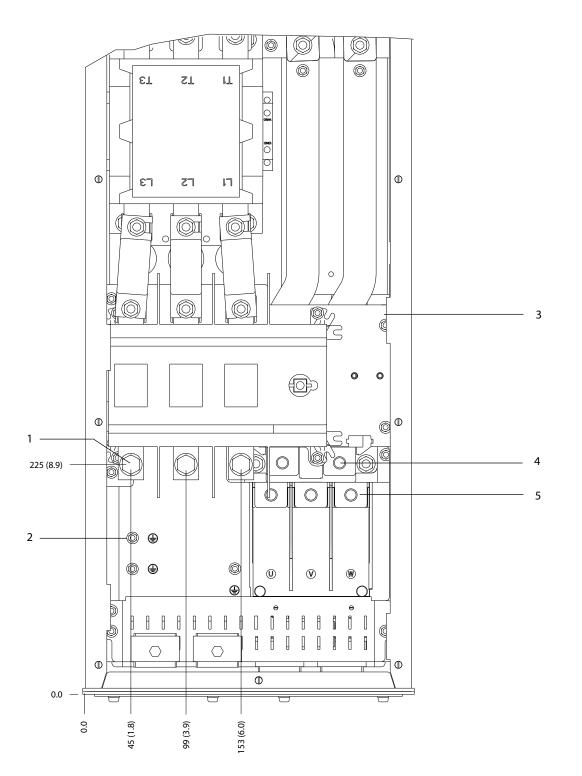
92

8.6.2 Dimensions des bornes D6h



1	Bornes d'alimentation	4	Bornes de freinage
2	Bornes de mise à la terre	5	Bornes du moteur
3	Bornier TB6 pour le contacteur	-	-

Illustration 8.41 Dimensions des bornes D6h avec option contacteur (vue frontale)


8

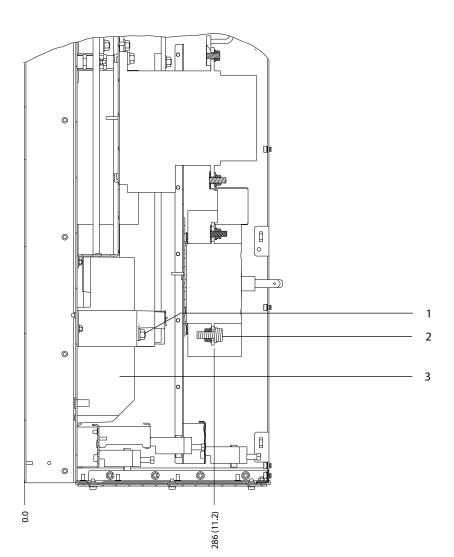

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	-	-

Illustration 8.42 Dimensions des bornes D6h avec option contacteur (vues latérales)

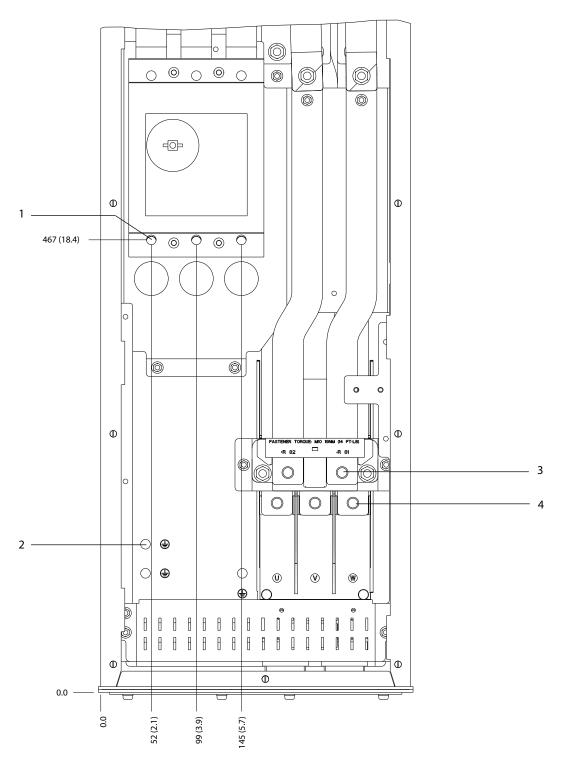
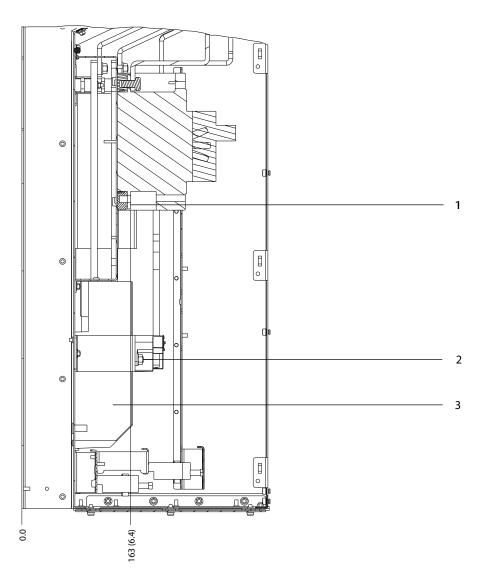

1	Bornes d'alimentation	4	Bornes de freinage
2	Bornes de mise à la terre	5	Bornes du moteur
3	Bornier TB6 pour le contacteur	-	-

Illustration 8.43 Dimensions des bornes D6h avec options contacteur et sectionneur (vue frontale)

1	Bornes de freinage	3	Bornes du moteur
2	 Bornes d'alimentation	-	-


Illustration 8.44 Dimensions des bornes D6h avec options contacteur et sectionneur (vues latérales)

1	Bornes d'alimentation	3	Bornes de freinage
2	Bornes de mise à la terre	4	Bornes du moteur

Illustration 8.45 Dimensions des bornes D6h avec option disjoncteur (vue frontale)

MG22B204

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	-	-

Illustration 8.46 Dimensions des bornes D6h avec option disjoncteur (vues latérales)

8.7 Dimensions extérieures et des bornes D7h

8.7.1 Dimensions extérieures D7h

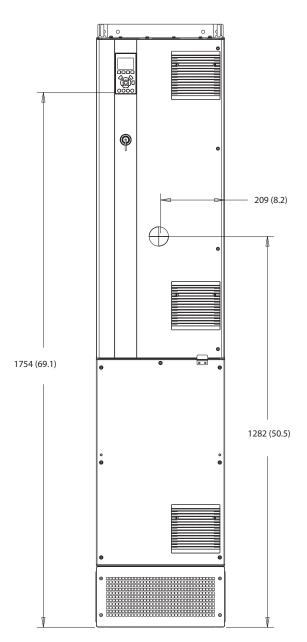


Illustration 8.47 Vue frontale du boîtier D7h

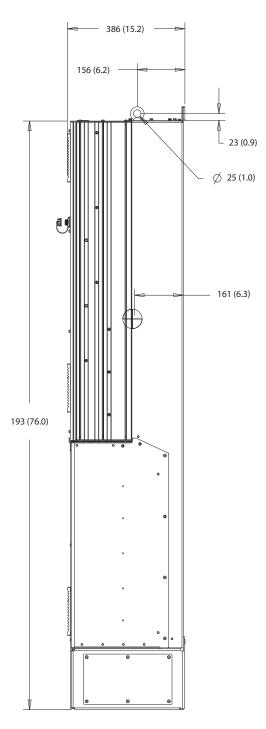
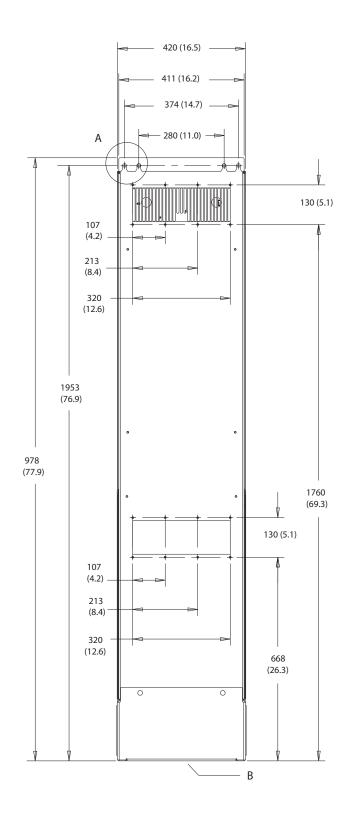
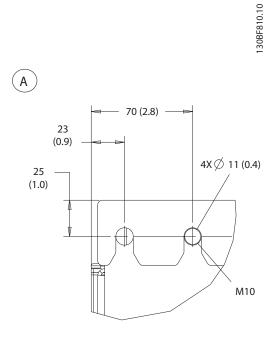




Illustration 8.48 Vue latérale du boîtier D7h

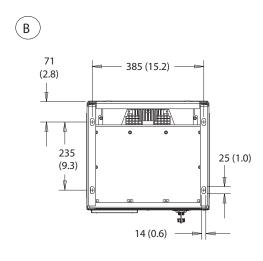


Illustration 8.49 Vue arrière du boîtier D7h

Q

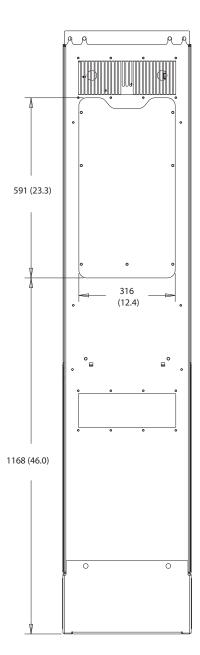


Illustration 8.50 Dimensions de l'accès au dissipateur de chaleur des boîtiers D7h

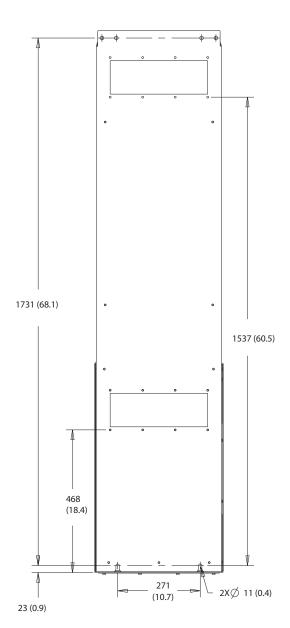


Illustration 8.51 Dimensions du montage mural D7h

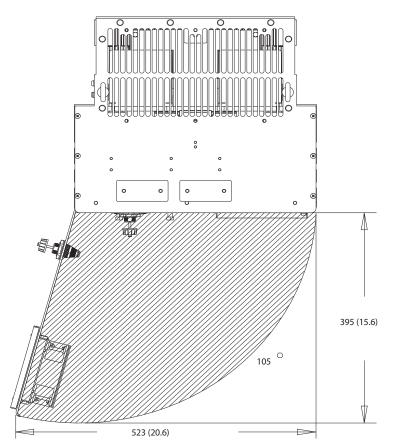


Illustration 8.52 Espace pour la porte du boîtier D7h

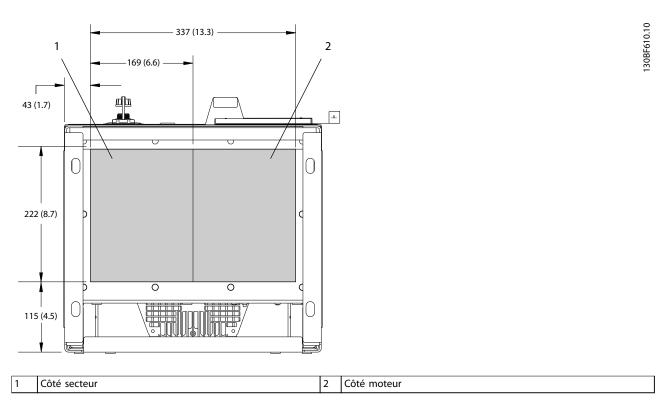
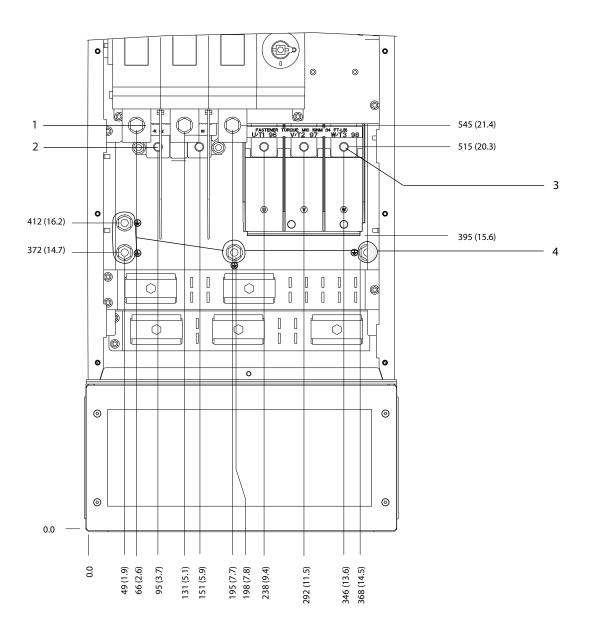
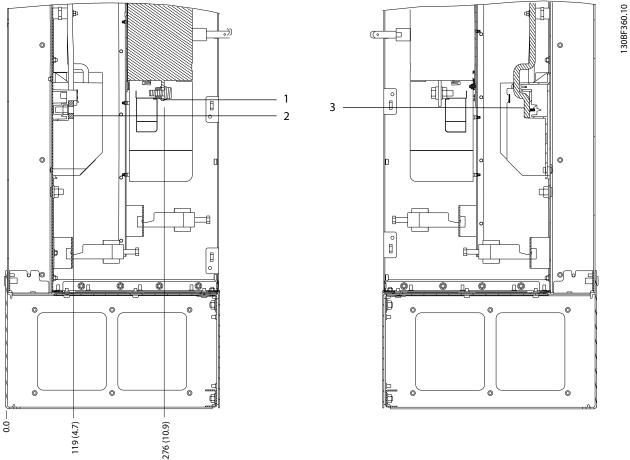
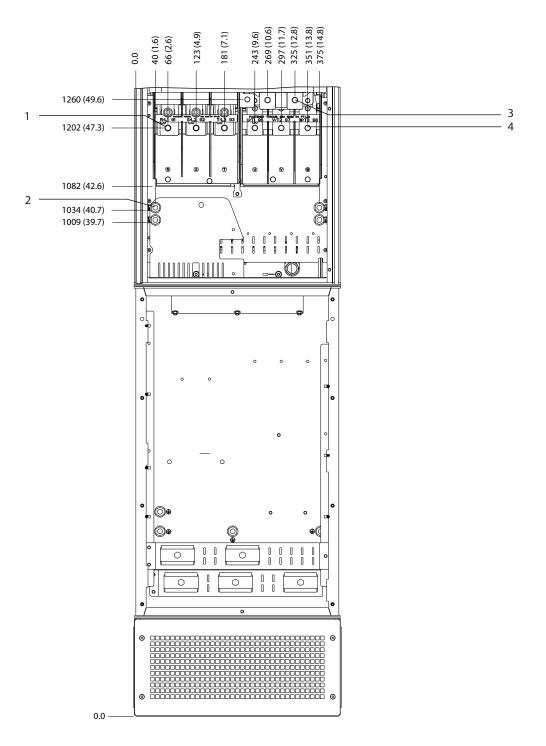



Illustration 8.53 Dimensions de la plaque presse-étoupe pour les boîtiers D7h

104


8.7.2 Dimensions des bornes D7h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	4	Bornes de mise à la terre


Illustration 8.54 Dimensions des bornes D7h avec option sectionneur (vue frontale)

Danfvss

Bornes d'alimentation Bornes du moteur Bornes de freinage

Illustration 8.55 Dimensions des bornes D7h avec option sectionneur (vues latérales)

1	Bornes d'alimentation	3	Bornes de freinage
2	Bornes de mise à la terre	4	Bornes du moteur

Illustration 8.56 Dimensions des bornes D7h avec option freinage (vue frontale)

MG22B204

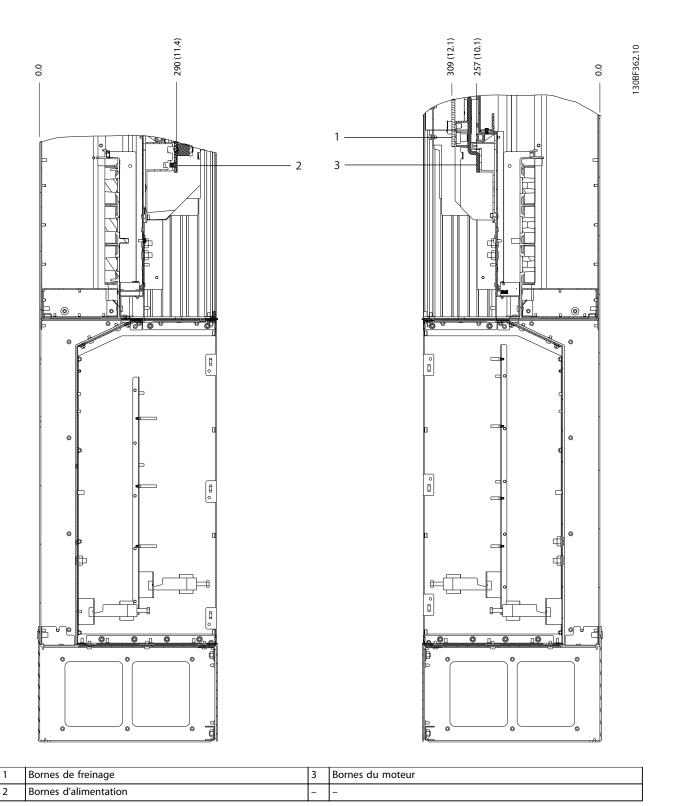


Illustration 8.57 Dimensions des bornes D7h avec option freinage (vues latérales)

8.8 Dimensions extérieures et des bornes D8h

8.8.1 Dimensions extérieures D8h

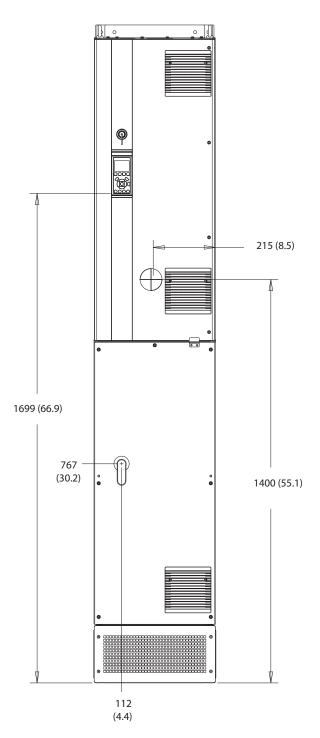


Illustration 8.58 Vue frontale du boîtier D8h

Danfvss

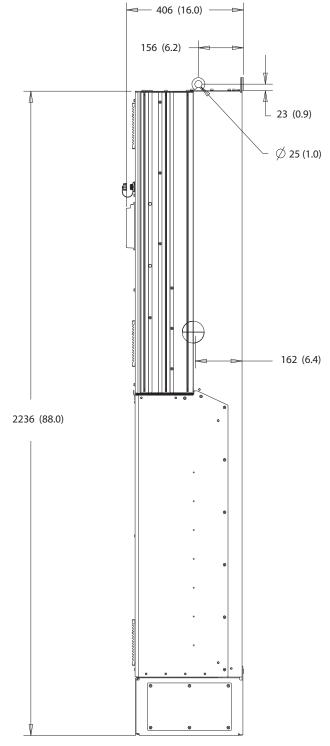


Illustration 8.59 Vue latérale du boîtier D8h

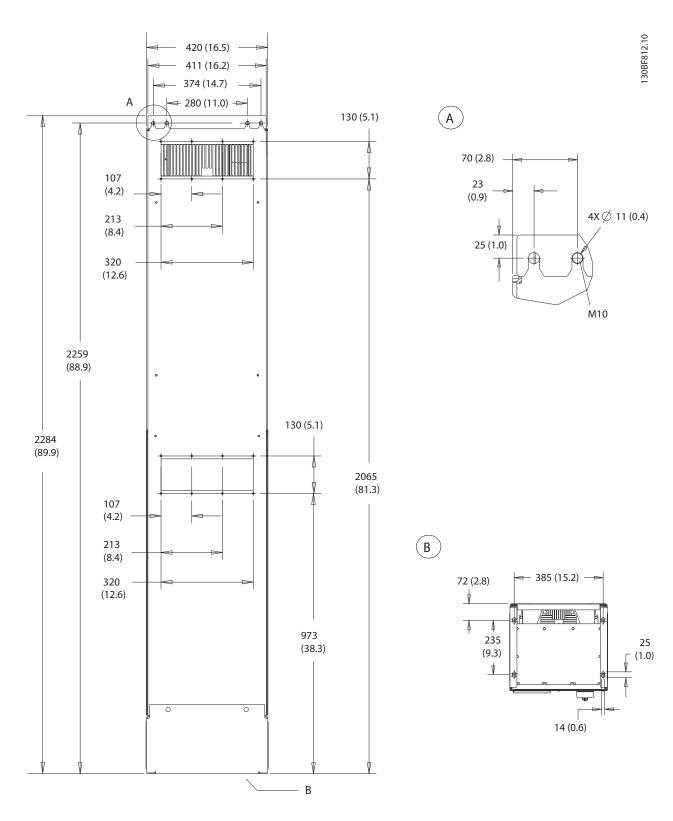


Illustration 8.60 Vue arrière du boîtier D8h

Q

130BF831.

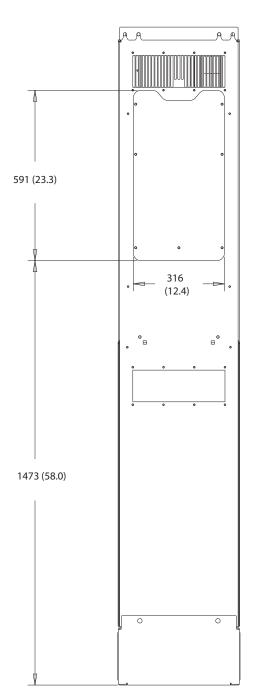


Illustration 8.61 Dimensions de l'accès au dissipateur de chaleur des boîtiers D8h

112

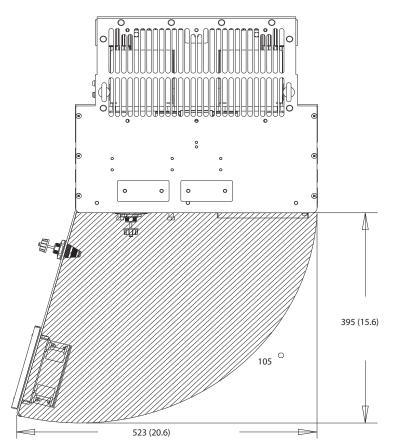


Illustration 8.62 Espace pour la porte du boîtier D8h

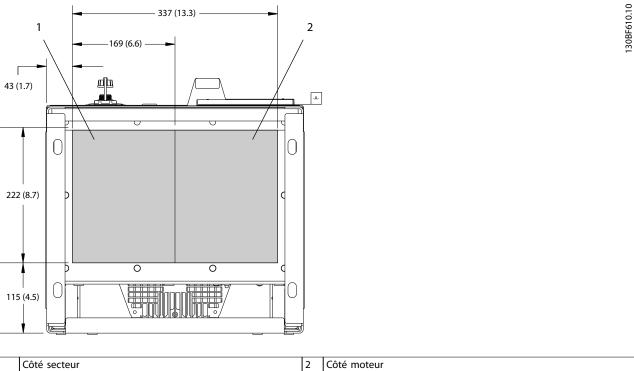
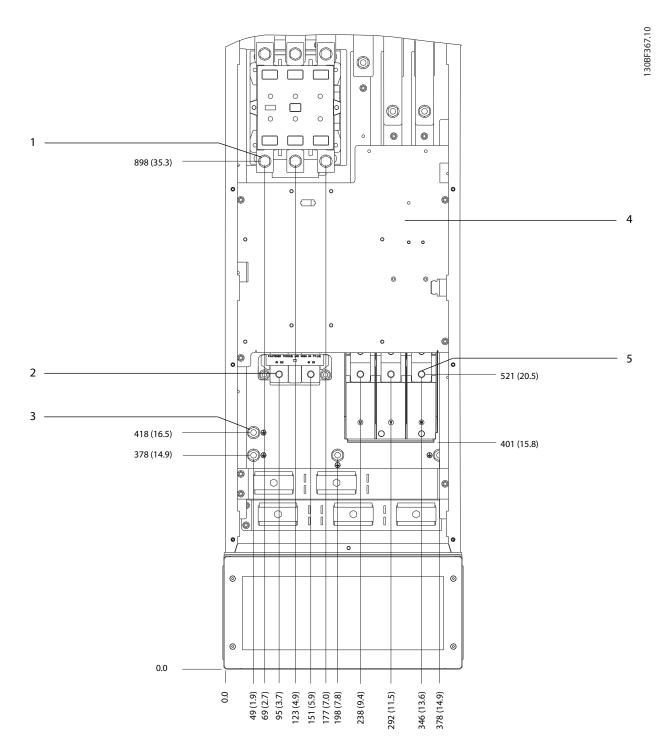
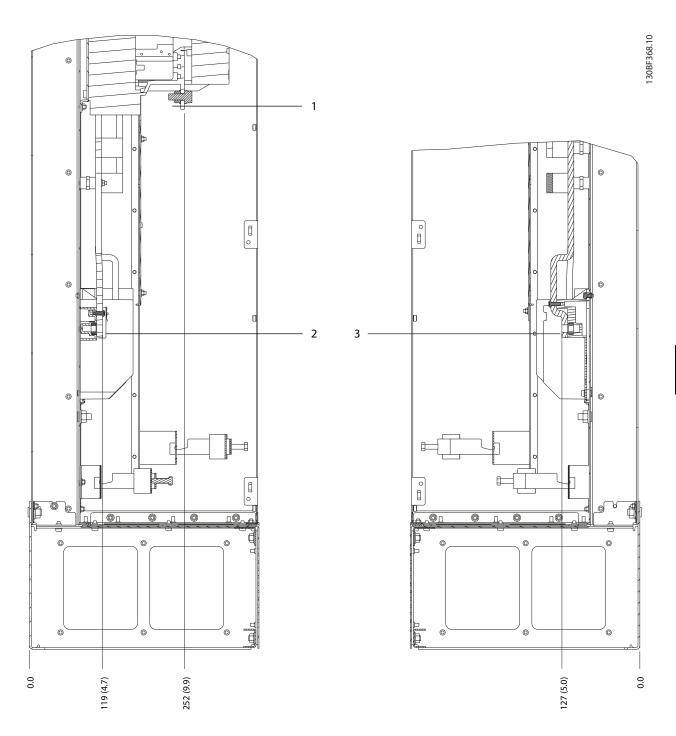



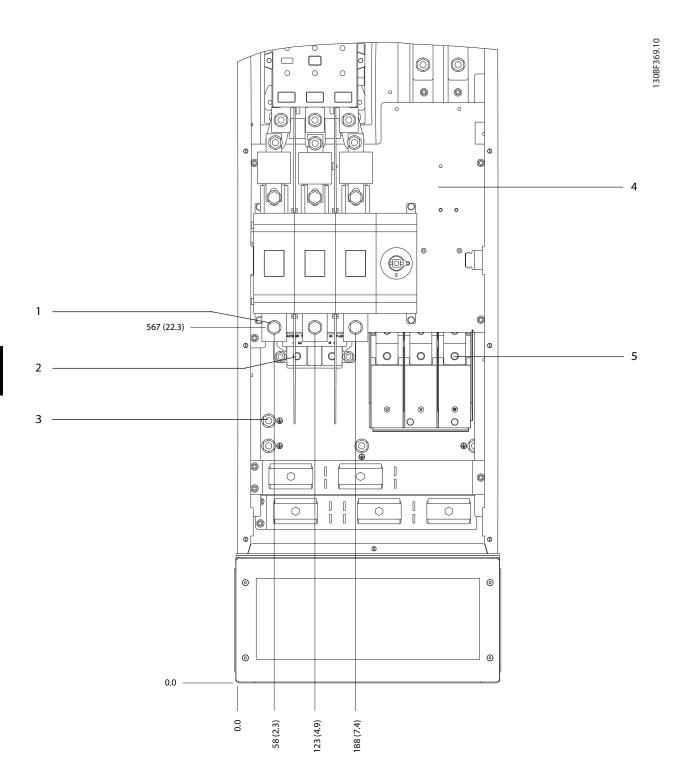
Illustration 8.63 Dimensions de la plaque presse-étoupe pour les boîtiers D8h

8.8.2 Dimensions des bornes D8h



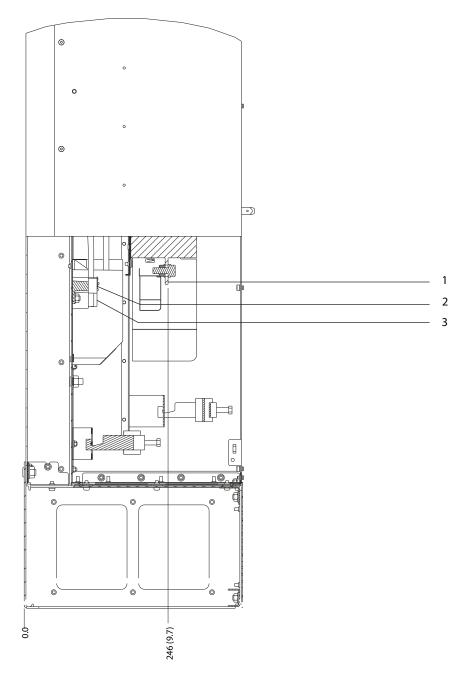
1	Bornes d'alimentation	4	Bornier TB6 pour le contacteur
2	Bornes de freinage	5	Bornes du moteur
3	Bornes de mise à la terre	-	-

Illustration 8.64 Dimensions des bornes D8h avec option contacteur (vue frontale)



1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	-	-

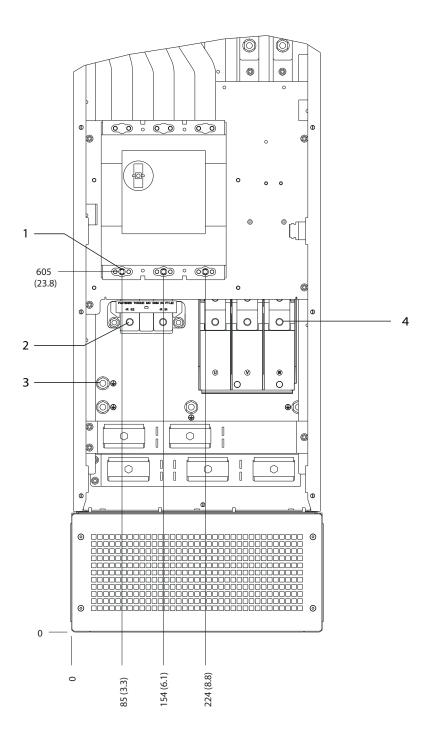
Illustration 8.65 Dimensions des bornes D8h avec option contacteur (vues latérales)



1	Bornes d'alimentation	4	Bornier TB6 pour le contacteur
2	Bornes de freinage	5	Bornes du moteur
3	Bornes de mise à la terre	-	-

Illustration 8.66 Dimensions des bornes D8h avec options contacteur et sectionneur (vue frontale)

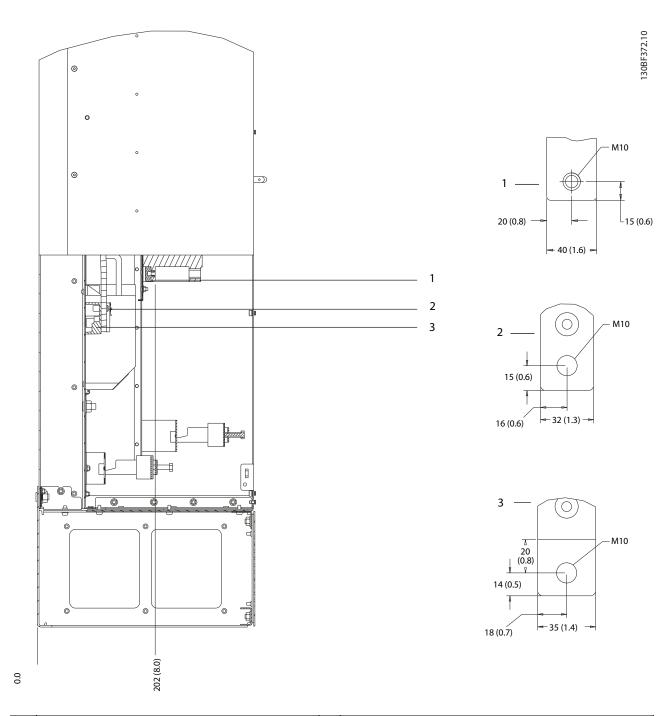
130BF370.10



1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage	_	-

Illustration 8.67 Dimensions des bornes D8h avec options contacteur et sectionneur (vue latérale)

Q


Danfoss

1	Bornes d'alimentation	3	Bornes de mise à la terre
2	Bornes de freinage	4	Bornes du moteur

Illustration 8.68 Dimensions des bornes D8h avec option disjoncteur (vue frontale)

 1
 Bornes d'alimentation
 3
 Bornes du moteur

 2
 Bornes de freinage

Illustration 8.69 Dimensions des bornes D8h avec option disjoncteur (vue latérale)

Q

8.9 Dimensions extérieures et des bornes E1h

8.9.1 Dimensions extérieures E1h

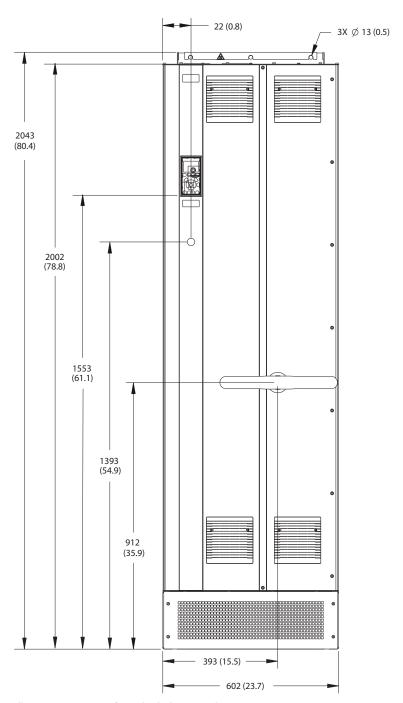
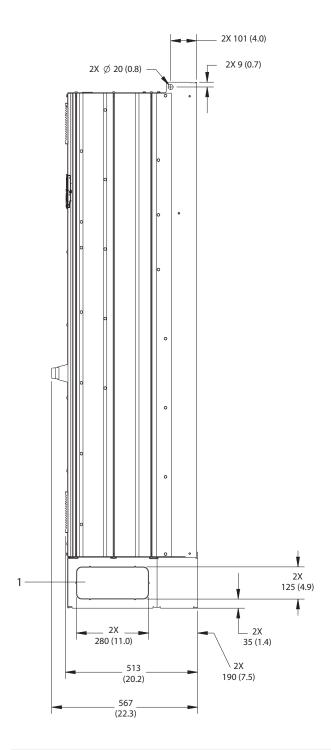
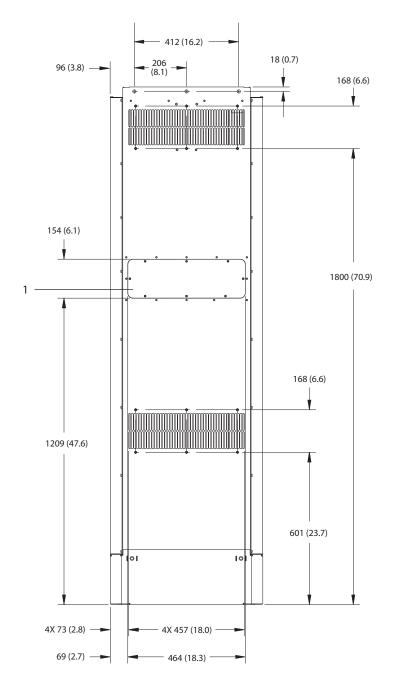
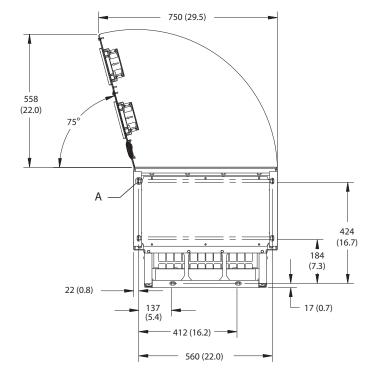



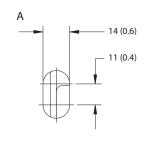
Illustration 8.70 Vue frontale du boîtier E1h

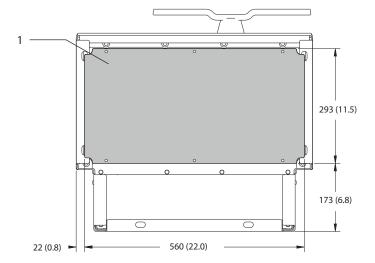
0


130BF649.10

1 Panneau de coupure

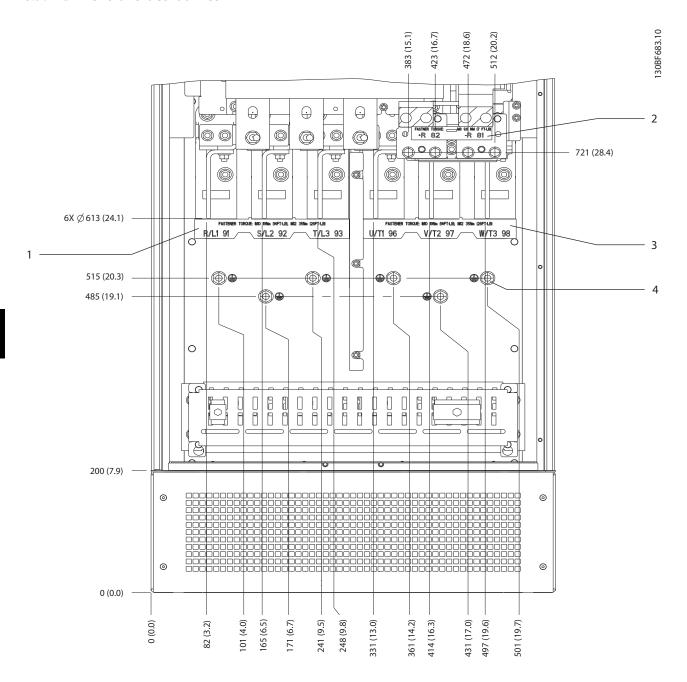

Illustration 8.71 Vue latérale du boîtier E1h


Danfoss



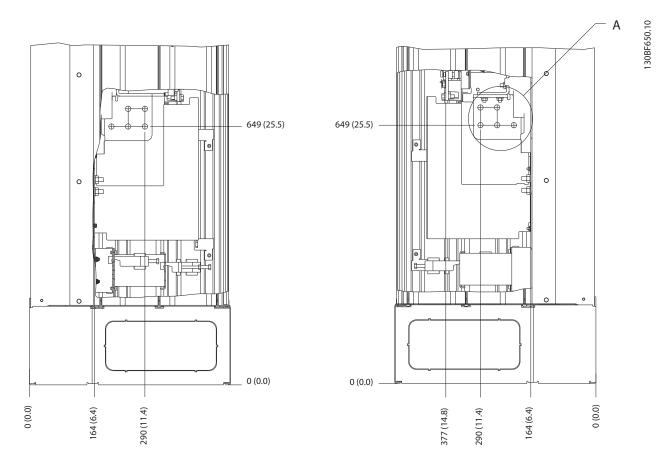
1 Trappe d'accès au radiateur arrière (en option)

Illustration 8.72 Vue arrière du boîtier E1h



1 Plaque presse-étoupe

Illustration 8.73 Espace pour la porte et dimensions de la plaque presse-étoupe du boîtier E1h


8.9.2 Dimensions des bornes E1h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage ou régénératrices	4	Bornes de mise à la terre, écrou M10

Illustration 8.74 Dimensions des bornes E1h (vue de face)

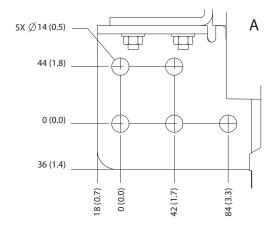
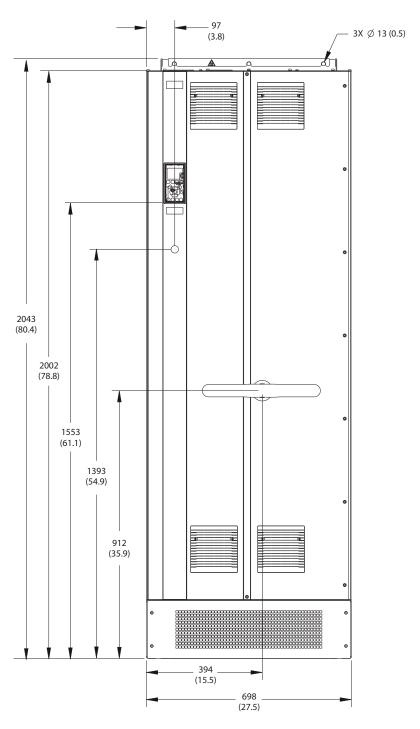
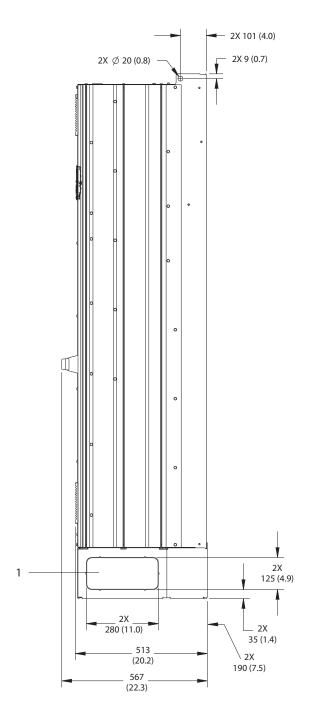


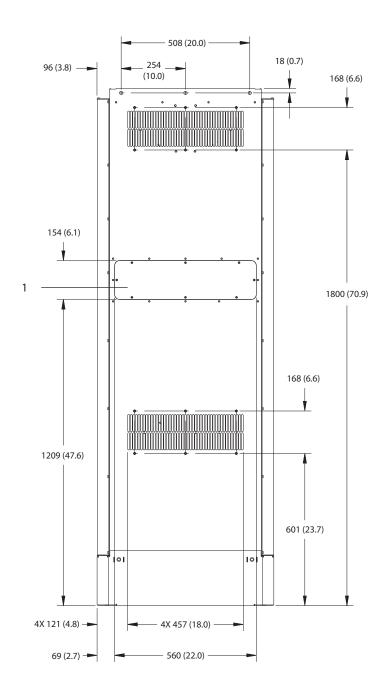
Illustration 8.75 Dimensions des bornes E1h (vues latérales)

R

8.10 Dimensions extérieures et des bornes E2h

8.10.1 Dimensions extérieures E2h

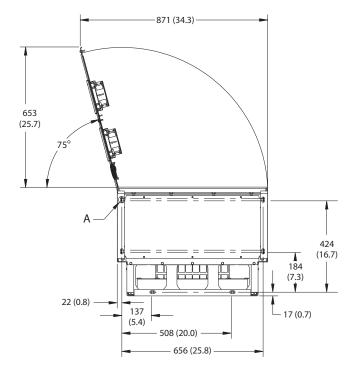



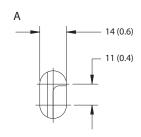

Illustration 8.76 Vue frontale du boîtier E2h

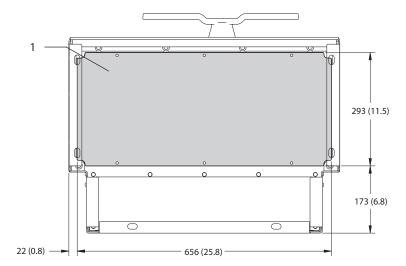
1 Panneau de coupure

Illustration 8.77 Vue latérale du boîtier E2h

Danfoss




1 Trappe d'accès au radiateur arrière (en option)


Illustration 8.78 Vue arrière du boîtier E2h

130BF652.10

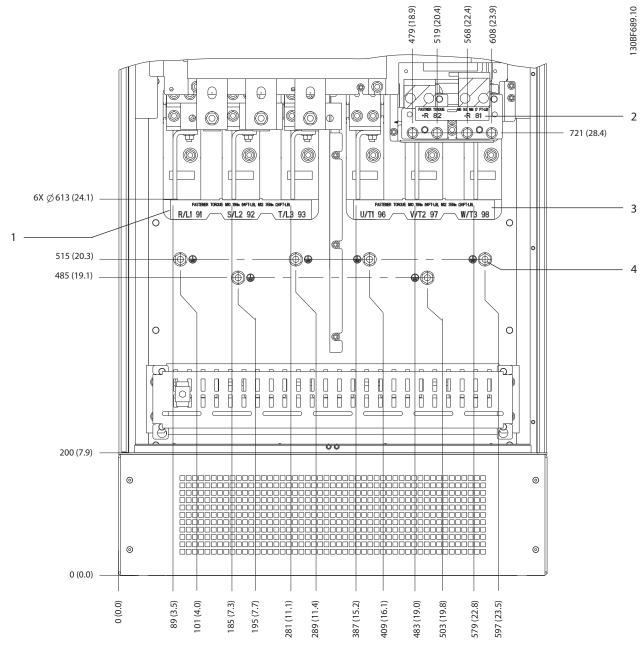
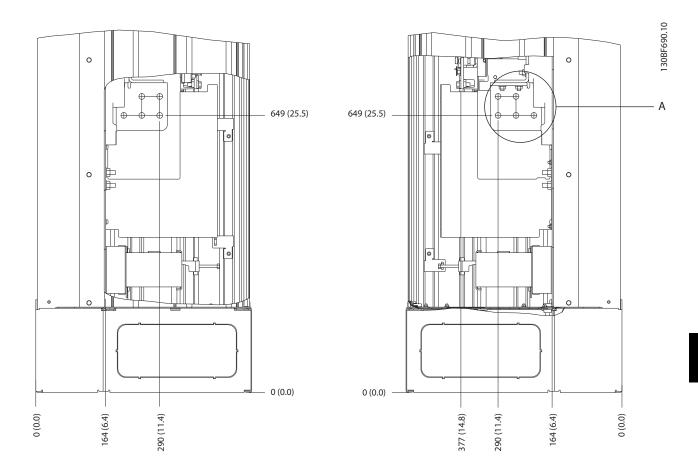

1 Plaque presse-étoupe

Illustration 8.79 Espace pour la porte et dimensions de la plaque presse-étoupe du boîtier E2h

ξ


8.10.2 Dimensions des bornes E2h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage ou régénératrices	4	Bornes de mise à la terre, écrou M10

Illustration 8.80 Dimensions des bornes E2h (vue de face)

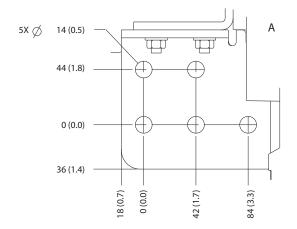


Illustration 8.81 Dimensions des bornes E2h (vues latérales)

Q

8.11 Dimensions extérieures et des bornes E3h

8.11.1 Dimensions extérieures E3h

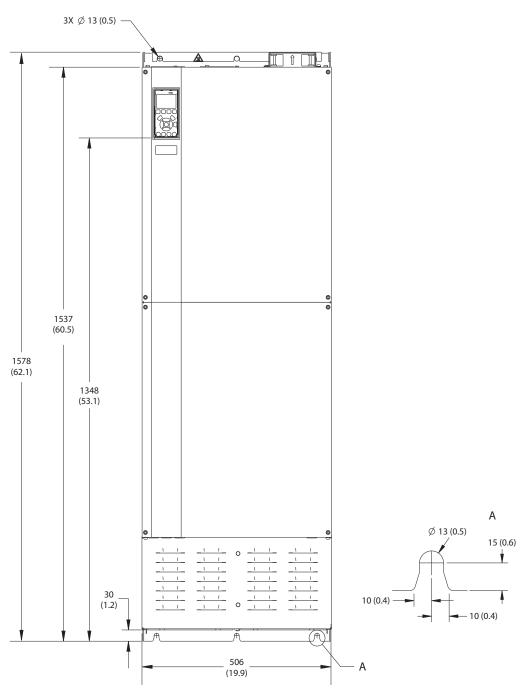


Illustration 8.82 Vue frontale du boîtier E3h

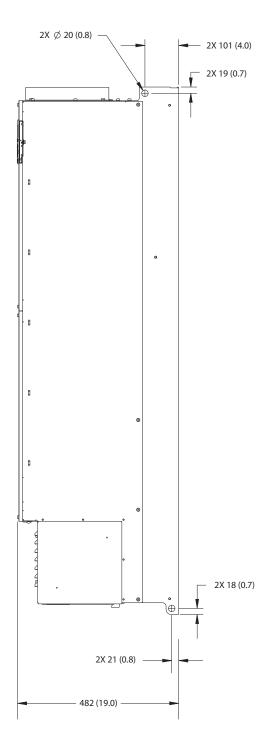
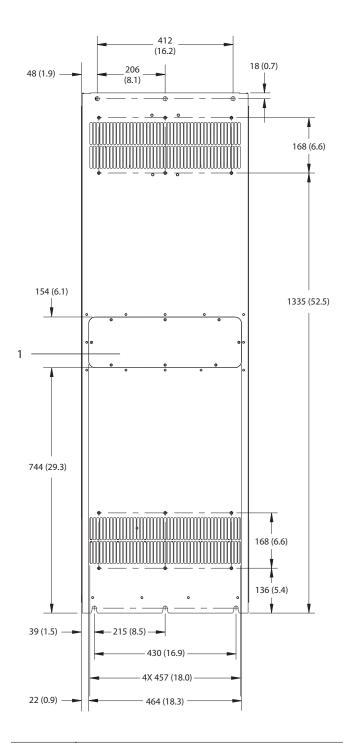
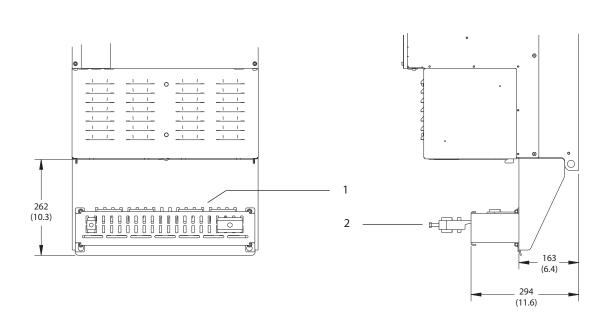



Illustration 8.83 Vue latérale du boîtier E3h

130BF657.10



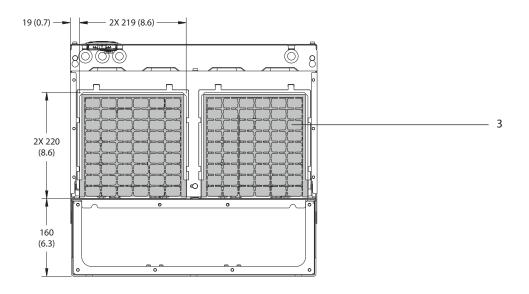

1 Trappe d'accès au radiateur arrière (en option)

Illustration 8.84 Vue arrière du boîtier E3h

130BF659.10

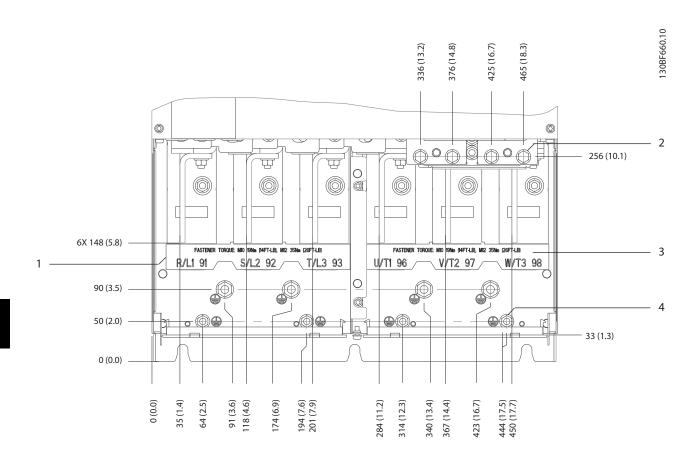
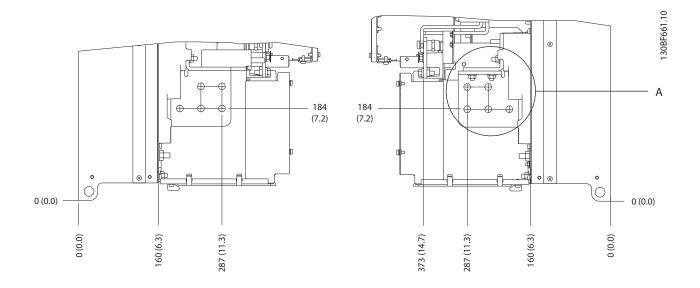

1	Terminaison du blindage (de série avec l'option RFI)
2	Câble/bride CEM
3	Plaque presse-étoupe

Illustration 8.85 Terminaison du blindage RFI et dimensions de la plaque presse-étoupe du boîtier E3h

8


8.11.2 Dimensions des bornes E3h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage ou régénératrices	4	Bornes de mise à la terre, écrous M8 et M10

Illustration 8.86 Dimensions des bornes E3h (vue de face)

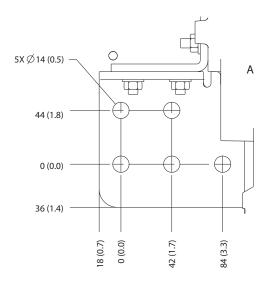
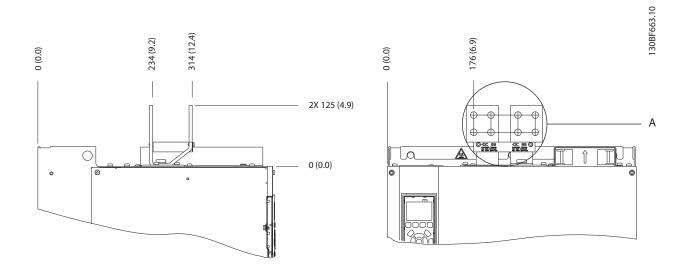



Illustration 8.87 Dimensions des bornes de secteur, moteur et terre E3h (vues latérales)

Q

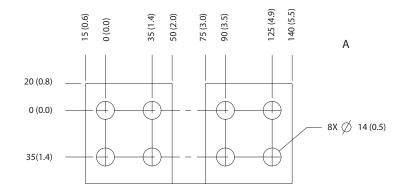
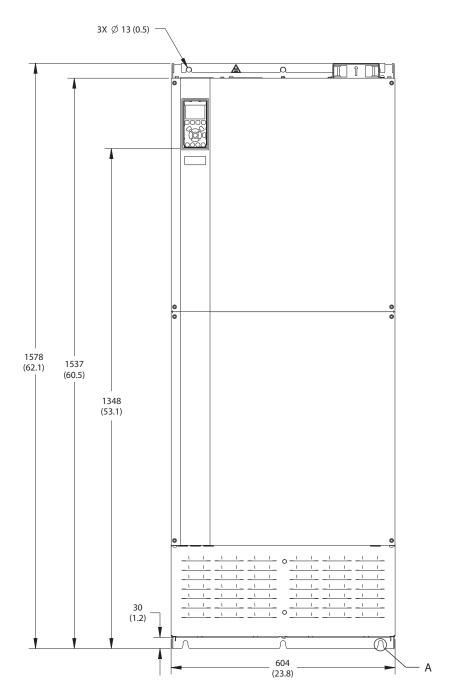


Illustration 8.88 Dimensions des bornes de répartition de la charge/régénératrices E3h


R

130BF664.10

8.12 Dimensions extérieures et des bornes E4h

8.12.1 Dimensions extérieures E4h

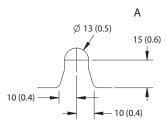


Illustration 8.89 Vue frontale du boîtier E4h

Danfoss

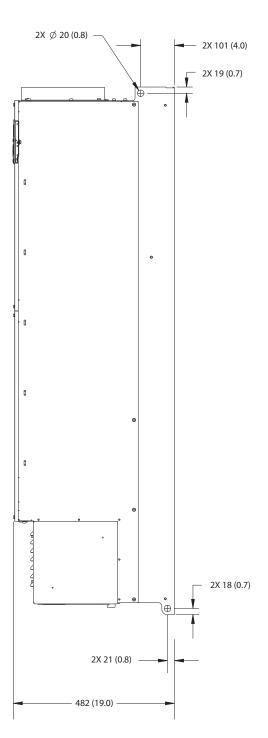
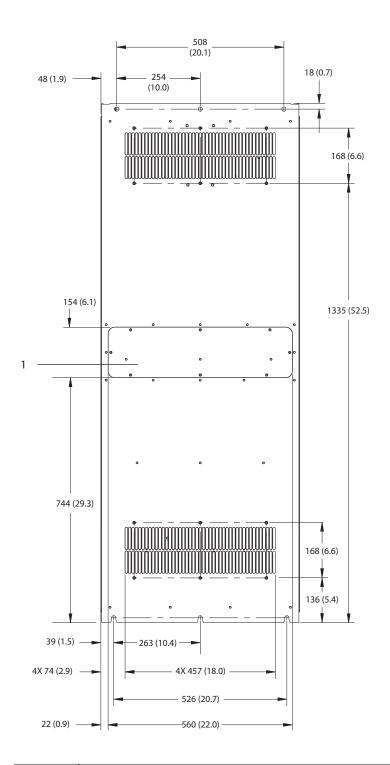
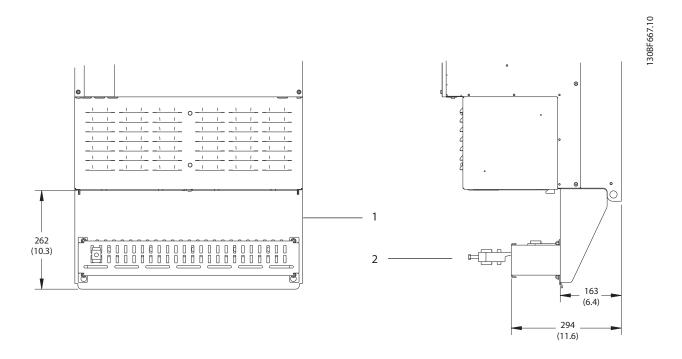
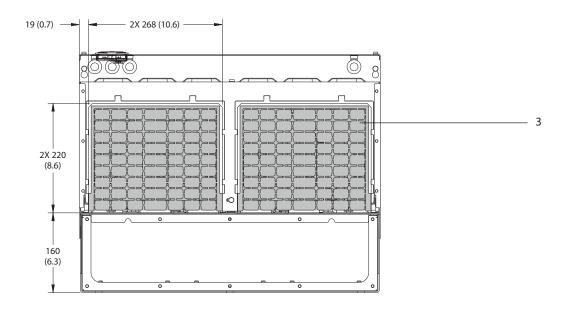



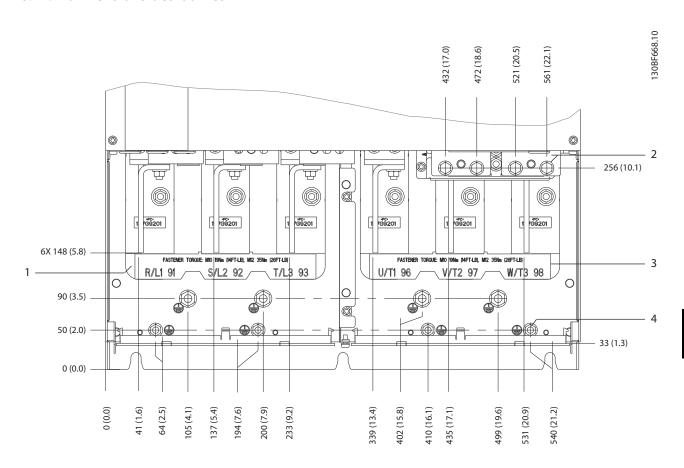
Illustration 8.90 Vue latérale du boîtier E4h


130BF665.



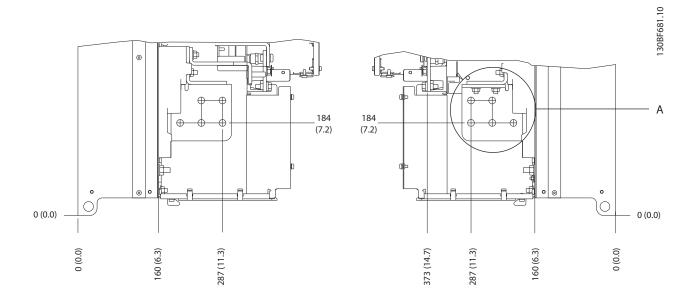
1 Trappe d'accès au radiateur arrière (en option)

Illustration 8.91 Vue arrière du boîtier E4h



1	Terminaison du blindage (de série avec l'option RFI)
2	Câble/bride CEM
3	Plaque presse-étoupe

Illustration 8.92 Terminaison du blindage RFI et dimensions de la plaque presse-étoupe du boîtier E4h


8.12.2 Dimensions des bornes E4h

1	Bornes d'alimentation	3	Bornes du moteur
2	Bornes de freinage ou régénératrices	4	Bornes de mise à la terre, écrous M8 et M10

Illustration 8.93 Dimensions des bornes E4h (vue de face)

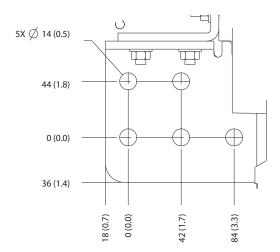
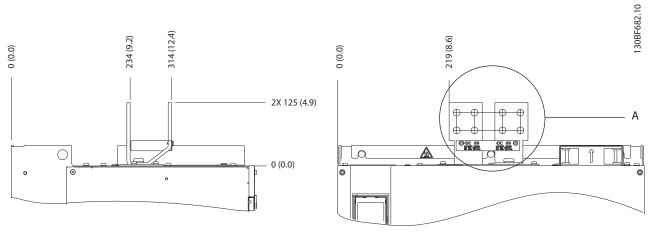



Illustration 8.94 Dimensions des bornes de secteur, moteur et terre E4h (vues latérales)

Q

Danfoss

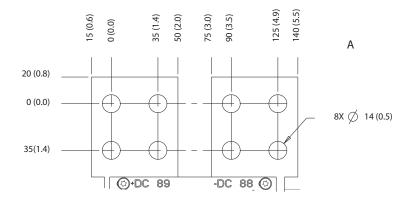


Illustration 8.95 Dimensions des bornes de répartition de la charge/régénératrices E4h

Q

9 Considérations relatives à l'installation mécanique

9.1 Stockage

Stocker le variateur dans un endroit sec. Garder l'équipement étanche dans son emballage jusqu'à l'installation. Se reporter au *chapitre 7.5 Conditions ambiantes* pour la température ambiante recommandée.

Aucun réveil périodique des condensateurs (charge du condensateur) n'est nécessaire pendant le stockage tant qu'il ne dure pas plus de 12 mois.

9.2 Levage de l'unité

Lever toujours le variateur par les anneaux de levage prévus à cet effet. Utiliser une barre pour éviter une déformation des anneaux de levage.

AAVERTISSEMENT

RISQUE DE BLESSURES OU DE DÉCÈS

Respecter les réglementations de sécurité locales pour le levage de poids lourds. Le non-respect des recommandations et des réglementations de sécurité locales est susceptible d'entraîner la mort ou des blessures graves.

- S'assurer que l'équipement de levage est en état de fonctionner.
- Voir le chapitre 4 Vue d'ensemble des produits pour connaître le poids des différentes tailles de boîtier.
- Diamètre maximum de la barre : 20 mm (0,8 po).
- Angle de la partie supérieure du variateur au câble de levage : 60 ° ou plus.

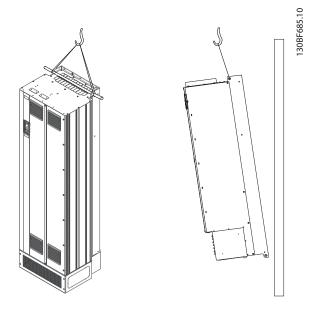


Illustration 9.1 Méthode de levage recommandée

9.3 Environnement de fonctionnement

Dans des environnements exposés à des liquides, à des particules ou à des gaz corrosifs en suspension dans l'air, s'assurer que le type de protection/IP de l'équipement correspond à l'environnement d'installation. Pour connaître les conditions ambiantes spécifiées, se reporter au chapitre 7.5 Conditions ambiantes.

AVIS!

CONDENSATION

L'humidité peut se condenser sur les composants électroniques et provoquer des courts-circuits. Éviter toute installation dans des endroits exposés au gel. Installer un élément de chauffage optionnel lorsque le variateur est plus froid que l'air ambiant. Le fonctionnement en mode veille réduit le risque de condensation tant que la dissipation de puissance maintient le circuit au sec.

AVIS!

CONDITIONS AMBIANTES EXTRÊMES

Des températures hautes ou basses compromettent la performance et la longévité de l'unité.

- Ne pas utiliser dans des environnements où la température ambiante dépasse 55 °C (131 °F).
- Le variateur peut fonctionner à des températures allant jusqu'à -10 °C (14 °F).
 Cependant, le fonctionnement correct à charge nominale est garanti à 0 °C (32 °F) ou plus uniquement.
- Si la température dépasse les limites de température ambiante, une climatisation supplémentaire de l'armoire ou du site d'installation est nécessaire.

9.3.1 Gaz

Les gaz agressifs, tels que le sulfure d'hydrogène, le chlore ou l'ammoniac, peuvent endommager les composants électriques et mécaniques. L'unité utilise des cartes de circuit tropicalisées pour réduire les effets des gaz agressifs. Pour connaître les classes et les spécifications des classes de tropicalisation conformes, se reporter au chapitre 7.5 Conditions ambiantes.

9.3.2 Poussière

Lors de l'installation du variateur dans des environnements poussiéreux, prêter attention aux points suivants :

Maintenance périodique

Lorsque la poussière s'accumule sur les composants électroniques, elle crée une couche d'isolation. Cette couche réduit la capacité de refroidissement des composants, ils deviennent ainsi plus chauds. L'environnement plus chaud diminue la durée de vie des composants électroniques.

Veiller à ce qu'il n'y ait pas d'accumulation de poussière sur le radiateur et les ventilateurs. Pour plus d'informations sur le service et la maintenance, se reporter au *manuel d'utilisation*.

Ventilateurs de refroidissement

Les ventilateurs font circuler l'air pour refroidir le variateur. Lorsque les ventilateurs sont exposés à des environnements poussièreux, la poussière peut endommager les paliers et causer une panne prématurée des ventilateurs. La poussière peut également s'accumuler sur les pales du ventilateur et causer un déséquilibre qui empêchera les ventilateurs de refroidir l'unité correctement.

9.3.3 Atmosphères potentiellement explosives

AAVERTISSEMENT

ATMOSPHÈRE EXPLOSIVE

Ne jamais installer de variateur dans une atmosphère potentiellement explosive. Installer l'unité dans une armoire située à l'extérieur de cette zone. Le non-respect de cette consigne augmente le risque de décès ou des blessures graves.

Les systèmes utilisés dans des atmosphères potentiellement explosives doivent répondre à des conditions particulières. La directive européenne 94/9/CE (ATEX 95) classe le fonctionnement des dispositifs électroniques dans des atmosphères potentiellement explosives.

- La classe d spécifie qu'en cas d'étincelles, elle sera confinée dans un espace protégé.
- La classe e interdit toute étincelle.

Moteurs avec protection de classe d

Ne nécessitent pas d'approbation. Des câblages et un confinement spéciaux sont nécessaires.

Moteurs avec protection de classe e

Associée au dispositif de surveillance PTC agréé ATEX tel que le VLT® PTC Thermistor Card MCB 112, l'installation n'a pas besoin d'homologation individuelle par un organisme agréé.

Moteurs avec protection de classe d/e

Le moteur lui-même présente une classe de protection contre l'inflammation e, alors que le câblage du moteur et l'environnement de connexion sont exécutés en conformité avec la classe de protection d. Pour atténuer le pic de tension élevé, utiliser un filtre sinus à la sortie du variateur.

En cas d'utilisation de variateur dans une atmosphère potentiellement explosive, utiliser les éléments suivants :

- Moteurs avec protection contre l'inflammation de classe d ou e
- Capteur de température PTC pour surveiller la température du moteur
- Câbles de moteur courts
- Filtres Sinus de sortie si des câbles de moteur blindés ne sont pas utilisés

AVIS!

SURVEILLANCE PAR CAPTEUR DE LA THERMISTANCE DU MOTEUR

Les variateurs équipés de l'option VLT® PTC Thermistor Card MCB 112 sont certifiés PTB pour les atmosphères potentiellement explosives.

9.4 Considérations relatives au montage

Le *Tableau 9.1* indique les configurations de montage disponibles pour chaque boîtier. Pour des instructions spécifiques de montage mural ou sur socle, voir le *manuel d'utilisation*. Voir aussi le *chapitre 8 Dimensions extérieures et des bornes*.

AVIS!

Toute mauvaise installation peut entraîner une surchauffe et une réduction de la performance.

Boîtier	Montage mural/en	Montage sur socle
	armoire	(autonome)
D1h	Х	Х
D2h	Х	Х
D3h	X ¹⁾	-
D4h	X ¹⁾	-
D5h	-	Х
D6h	-	Х
D7h	-	X
D8h	-	Х
E1h	-	Х
E2h	-	Х
E3h	X ²⁾	-
E4h	X ²⁾	-

Tableau 9.1 Considérations relatives au montage

1) Peut être monté sur un mur, mais Danfoss recommande de monter le variateur sur une armoire à l'intérieur d'un boîtier, en raison de son indice de protection.

2) Le variateur peut être monté dans les configurations suivantes :

- verticalement sur la plaque arrière de l'armoire ;
- verticalement dans le sens inverse sur la plaque arrière de l'armoire. Contacter l'usine;
- horizontalement sur le dos, sur la plaque arrière de l'armoire. Contacter l'usine;
- horizontalement sur le côté, sur la base de l'armoire.
 Contacter l'usine;

Considérations lors du montage :

- Placer l'unité le plus près possible du moteur. Se reporter au pour connaître la longueur de câble du moteur maximale.
- Assurer la stabilité de l'unité en la montant sur une surface solide.
- Veiller à ce que l'emplacement d'installation soit suffisamment résistant pour supporter le poids de l'unité.
- S'assurer que l'espace autour de l'unité permet un refroidissement adéquat. Se reporter au chapitre 5.13 Vue d'ensemble du refroidissement par le canal de ventilation arrière.

- Garantir que l'accès est suffisant pour ouvrir la porte.
- Garantir l'entrée du câble par le bas.

9.5 Refroidissement

AVIS!

Toute mauvaise installation peut entraîner une surchauffe et une réduction de la performance. Pour un montage approprié, se reporter au chapitre 9.4 Considérations relatives au montage

- S'assurer qu'un dégagement en haut et en bas est prévu pour le refroidissement. Exigence relative au dégagement : 225 mm (9 po).
- Prévoir un débit d'air suffisant. Voir le *Tableau 9.2*.
- Le déclassement doit être envisagé pour des températures comprises entre 45 °C (113 °F) et 50 °C (122 °F) et une altitude de 1 000 m (3 300 pi) au-dessus du niveau de la mer. Voir le chapitre 9.6 Déclassement pour plus d'informations sur le déclassement.

Le variateur utilise un concept de refroidissement par canal de ventilation arrière qui élimine l'air de refroidissement du dissipateur de chaleur. Environ 90 % de la chaleur du canal arrière du variateur est évacuée. Rediriger l'air du canal arrière de l'armoire ou de l'enceinte en utilisant l'un des dispositifs ci-dessous :

• Refroidissement par gaine

Des kits de refroidissement par canal arrière sont disponibles pour évacuer l'air de refroidissement du dissipateur de chaleur en dehors de l'armoire lorsque des variateurs IP20/châssis sont installés dans des boîtiers Rittal. L'utilisation de ces kits réduit la chaleur dans l'armoire et des ventilateurs de porte plus petits peuvent être spécifiés.

• Refroidissement par l'arrière

L'installation de couvercles supérieur et inférieur sur l'unité permet à l'air de refroidissement du canal arrière d'être évacué hors de l'enceinte.

AVIS!

Pour les boîtiers E3h et E4h (IP20/châssis), il faut au moins un ventilateur de porte sur le boîtier pour éliminer la chaleur non prise en charge par le canal de ventilation arrière du variateur. Cela permet aussi d'éliminer les pertes supplémentaires générées par d'autres composants à l'intérieur du variateur. Pour sélectionner la taille de ventilateur adéquate, calculer le débit d'air total requis.

Assurer la circulation d'air nécessaire au-dessus du dissipateur de chaleur.

Châssis	Ventilateur de porte/ ventilateur supérieur [m³/h (cfm)]	Ventilateur de radiateur [m³/h (cfm)]	
D1h	102 (60)	420 (250)	
D2h	204 (120)	840 (500)	
D3h	102 (60)	420 (250)	
D4h	204 (120)	840 (500)	
D5h	102 (60)	420 (250)	
D6h	102 (60)	420 (250)	
D7h	204 (120)	840 (500)	
D8h	204 (120)	840 (500)	

Tableau 9.2 Débit d'air nominal D1h-D8h

Châssis	Ventilateur de porte/ ventilateur supérieur [m³/h (cfm)]	Ventilateur de radiateur [m³/h (cfm)]
E1h	510 (300)	994 (585)
E2h	552 (325)	1053–1206 (620–710)
E3h	595 (350)	994 (585)
E4h	629 (370)	1053–1206 (620–710)

Tableau 9.3 Débit d'air nominal E1h-E4h

9.6 Déclassement

Le déclassement est une méthode utilisée pour réduire le courant de sortie et éviter l'arrêt du variateur lorsque l'intérieur du boîtier atteint des températures élevées. Si certaines conditions extrêmes de fonctionnement sont attendues, un variateur plus puissant peut être utilisé en vue d'éviter ce déclassement. C'est ce qu'on appelle le « déclassement manuel ». Autrement, le variateur déclasse automatiquement le courant de sortie pour éliminer la chaleur excessive générée par ces conditions extrêmes.

Déclassement manuel

Lorsque les conditions suivantes sont réunies, Danfoss recommande de choisir un variateur d'une puissance plus élevée (un P710 au lieu d'un P630, par exemple) :

- vitesse réduite : lors d'une exploitation continue à bas régime dans des applications à couple constant;
- pression atmosphérique basse : fonctionnement à des altitudes supérieures à 1 000 m (3 281 pi);
- température ambiante élevée : fonctionnement à une température ambiante de 10 $^{\circ}$ C (50 $^{\circ}$ F) ;
- fréquence de commutation élevée ;
- câbles de moteur longs ;
- câbles présentant une section large.

Déclassement automatique

Si les conditions de fonctionnement suivantes sont réunies, le variateur modifie automatiquement sa fréquence de commutation ou son type de modulation (de PWM à SFAVM) afin de réduire la chaleur excessive à l'intérieur du boîtier :

- température trop élevée sur la carte de commande ou le dissipateur de chaleur ;
- charge moteur élevée ou vitesse du moteur réduite;
- haute tension du circuit intermédiaire.

AVIS!

Le déclassement automatique est différent lorsque le paramétre 14-55 Output Filter est réglé sur [2] Filtre sinus fixe.

9.6.1 Déclassement en cas de fonctionnement à basse vitesse

Lorsqu'un moteur est raccordé à un variateur, il est nécessaire de vérifier que son refroidissement est adapté. Le niveau de refroidissement requis dépend des éléments suivants :

- charge sur le moteur ;
- vitesse de fonctionnement ;
- durée de fonctionnement.

Applications de couple constant

Un problème peut survenir à faible vitesse de rotation dans des applications de couple constant. Dans une application de couple constant, un moteur peut surchauffer à des vitesses faibles en raison du peu d'air de refroidissement fourni par le ventilateur intégré au moteur.

Si le moteur fonctionne en continu à une vitesse de rotation inférieure à la moitié de la vitesse nominale, il convient de lui apporter un supplément d'air de refroidissement. Si ce n'est pas possible, il est possible d'utiliser un moteur conçu pour des applications de couple constant/à faible vitesse de rotation.

Applications de couple variable (quadratique)

Un refroidissement supplémentaire ou déclassement du moteur n'est pas nécessaire dans les applications de couple variable, lorsque le couple est proportionnel au carré de la vitesse, et lorsque la puissance est proportionnelle au cube de la vitesse. Les pompes centrifuges et les ventilateurs sont des applications de couple variable courantes.

9.6.2 Déclassement à haute altitude

La capacité de refroidissement de l'air est amoindrie en cas de faible pression atmosphérique. Aucun déclassement n'est nécessaire au-dessous d'une altitude de 1 000 m (3 281 pi). Au-dessus de 1 000 m (3 281 pi), déclasser la température ambiante (T_{AMB}) ou le courant de sortie maximal (I_{MAX}). Se reporter au *Illustration 9.2*.

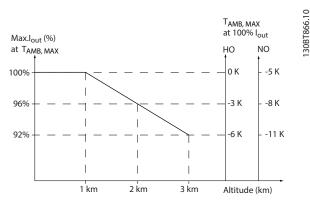


Illustration 9.2 Déclassement du courant de sortie en fonction de l'altitude à TAMB, MAX

L'Illustration 9.2 indique qu'à une température de 41,7 °C (107 °F), 100 % du courant nominal de sortie est disponible. À une température de 45 °C (113 °F) (T_{AMB, MAX} – 3 K), 91 % du courant nominal de sortie est disponible.

9.6.3 Déclassement pour température ambiante et fréquence de commutation

AVIS!

DÉCLASSEMENT PAR DÉFAUT

Les variateurs Danfoss sont déjà déclassés pour la température de fonctionnement (55 °C (131 °F) T_{AMB,MAX} et 50 °C (122 °F) T_{AMB,AVG}).

Utiliser les graphiques dans le *Tableau 9.4* et le *Tableau 9.5* pour déterminer si le courant de sortie doit être déclassé en fonction de la fréquence de commutation et de la température ambiante. Sur les graphiques, *l_{out}* correspond au pourcentage de courant nominal de sortie et *fsw* à la fréquence de commutation.

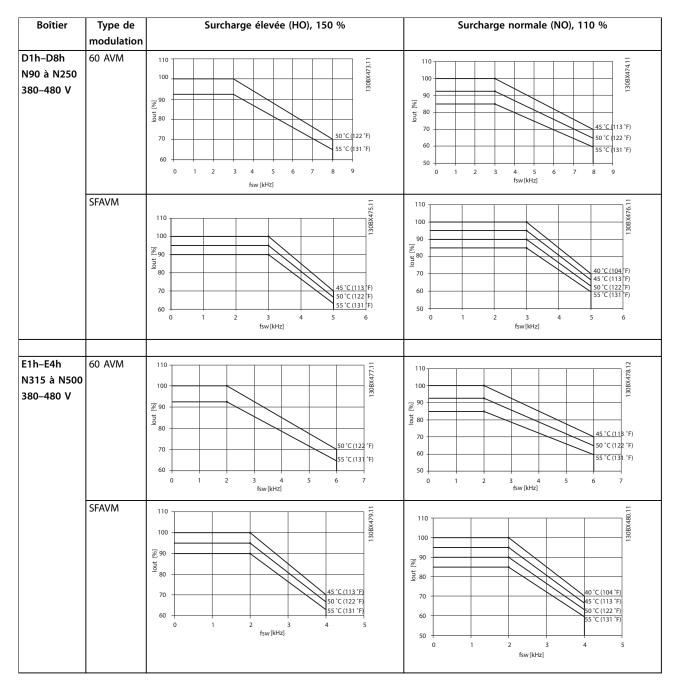


Tableau 9.4 Tableaux de déclassement des variateurs de valeur nominale 380-480 V

Q

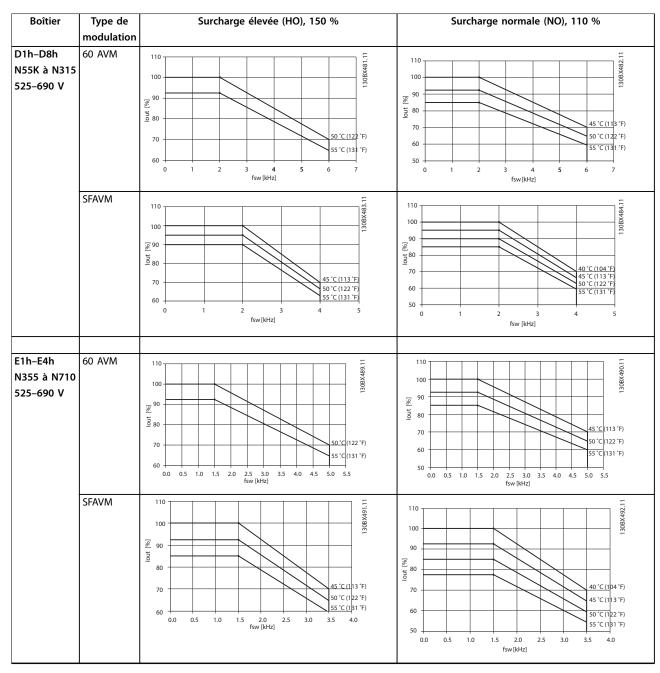


Tableau 9.5 Tableaux de déclassement des variateurs de valeur nominale 525-690 V

10 Considérations relatives à l'installation électrique

10.1 Consignes de sécurité

Voir le *chapitre 2 Sécurité* pour connaître les consignes de sécurité générales.

AAVERTISSEMENT

TENSION INDUITE

La tension induite des câbles de sortie moteur de divers variateurs acheminés ensemble peut charger les condensateurs de l'équipement, même lorsque ce dernier est hors tension et verrouillé. Le fait de ne pas acheminer les câbles du moteur de sortie séparément ou de ne pas utiliser de câbles blindés peut entraîner la mort ou des blessures graves.

- Acheminer séparément les câbles du moteur de sortie ou utiliser des câbles blindés.
- Verrouiller tous les variateurs en même temps.

AAVERTISSEMENT

CHOC ÉLECTRIQUE

Le variateur peut entraîner un courant CC dans le conducteur de terre et, par conséquent, mener à des blessures graves ou la mort.

 Lorsqu'un relais de protection différentielle (RCD) est utilisé comme protection contre les chocs électriques, seul un différentiel de type B est autorisé du côté alimentation de ce produit.

Le non-respect de la recommandation signifie que le RCD ne peut pas fournir la protection prévue.

Protection contre les surintensités

 Un équipement de protection supplémentaire tel qu'une protection thermique du moteur ou une

- protection contre les courts-circuits entre le variateur et le moteur est requis pour les applications à moteurs multiples.
- Des fusibles d'entrée sont nécessaires pour assurer une protection contre les courts-circuits et les surcharges. S'ils ne sont pas installés en usine, les fusibles doivent être fournis par l'installateur. Voir les calibres maximaux des fusibles dans le chapitre 10.5 Fusibles et disjoncteurs.

Caractéristiques et types de câbles

- L'ensemble du câblage doit être conforme aux réglementations nationales et locales en matière de sections de câble et de température ambiante.
- Recommandations relatives au raccordement du câblage de puissance : fil de cuivre prévu pour 75 °C (167 °F) minimum.

Pour connaître les tailles et les types de câbles recommandés, voir le *chapitre 7.6 Spécifications du câble*.

AATTENTION

DÉGÂTS MATÉRIELS

Le réglage par défaut ne prévoit pas de protection contre la surcharge du moteur. Pour ajouter cette fonction, régler le paramétre 1-90 Motor Thermal Protection sur [ETR Avertis.] ou [ETR Alarme]. Pour le marché nord-américain, la fonction ETR assure la protection de classe 20 contre la surcharge du moteur, en conformité avec NEC. Si le paramétre 1-90 Motor Thermal Protection n'a pas pu être réglé sur [ETR Alarme] ou [ETR Avertis.], cela implique que la protection du moteur contre la surcharge n'est pas assurée et que des dommages matériels peuvent survenir en cas de surchauffe du moteur.

10.2 Schéma de câblage

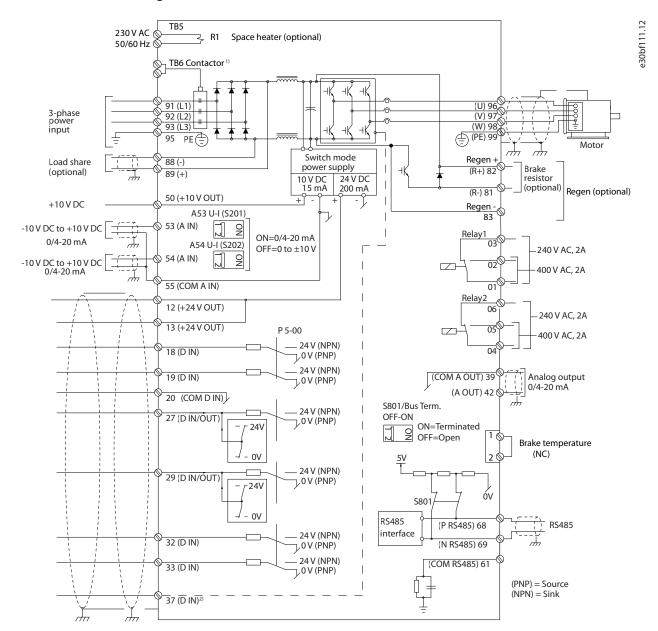


Illustration 10.1 Schéma de câblage de base

A = analogique, D = digitale

1) La borne 37 (en option) est utilisée pour la fonction Safe Torque Off. Pour obtenir les instructions d'installation de la fonction Safe Torque Off, se reporter au manuel d'utilisation de la fonction Safe Torque Off de la série FC de VLT[®].

10.3 Connexions

10.3.1 Connexions de l'alimentation

AVIS!

L'ensemble du câblage doit être conforme aux réglementations nationales et locales en matière de sections de câble et de température ambiante. Les applications UL exigent des conducteurs en cuivre 75 °C (167 °F). Les applications non conformes à UL peuvent utiliser des conducteurs en cuivre 75 °C (167 °F) et 90 °C (194 °F).

Les connexions du câble de puissance sont placées comme sur l'Illustration 10.2. Pour connaître le dimensionnement correct des sections et longueurs des câbles du moteur, voir le chapitre 7.1 Données électriques, 380-480 V et le chapitre 7.2 Données électriques, 525-690 V.

À des fins de protection du variateur, utiliser les fusibles recommandés sauf si l'unité contient des fusibles intégrés. Les fusibles recommandés sont répertoriés dans le chapitre 10.15 Installation selon critères CEM. S'assurer que les fusibles installés répondent aux réglementations locales.

Les câbles d'alimentation réseau se montent directement sur le sectionneur si celui-ci est inclus.

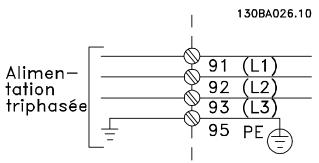


Illustration 10.2 Connexions des câbles de puissance

AVIS!

Le câble du moteur doit être blindé/armé. L'utilisation d'un câble non blindé/non armé n'est pas conforme à certaines exigences CEM. Utiliser un câble du moteur blindé/armé pour se conformer aux spécifications d'émissions CEM. Pour plus d'informations, voir le chapitre 10.15 Installation selon critères CEM.

Blindage des câbles

Éviter les extrémités blindées torsadées (queues de cochon), car elles détériorent l'effet de blindage à des fréquences élevées. Si l'installation d'un isolateur ou d'un contacteur de moteur impose de rompre le blindage, poursuivre ce dernier à l'impédance HF la plus faible possible.

Relier le blindage de câble du moteur à la plaque de connexion à la terre du variateur et au boîtier métallique du moteur.

Réaliser les connexions du blindage avec la plus grande surface possible (étrier de serrage) en utilisant les dispositifs d'installation fournis dans le variateur.

Longueur et section des câbles

La CEM du variateur a été testée avec un câble d'une longueur donnée. Raccourcir au maximum le câble du moteur pour réduire le niveau sonore et les courants de fuite.

Fréquence de commutation

Lorsque des variateurs sont utilisés avec des filtres sinus pour réduire le bruit acoustique d'un moteur, la fréquence de commutation doit être réglée conformément aux instructions du *paramétre 14-01 Switching Frequency*.

Borne	96	97	98	99	
_	U	٧	W	PE ¹⁾	Tension du moteur 0 à
					100 % de la tension secteur.
					3 fils hors du moteur.
-	U1	V1	W1	PF ¹⁾	Raccordement en triangle.
_	W2	U2	V2	PE"	6 fils hors du moteur.
_	U1	V1	W1	PE ¹⁾	Raccordement en étoile U2,
					V2, W2
					U2, V2 et W2 à intercon-
					necter séparément.

Tableau 10.1

1) Mise à la terre protégée

AVIS

Sur les moteurs sans isolation de phase, papier ou autre renforcement d'isolation convenant à un fonctionnement avec alimentation de tension, utiliser un filtre sinus à la sortie du variateur.

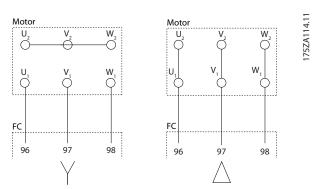


Illustration 10.3 Raccordement du câble du moteur

MG22B204

10.3.2 Raccordement du bus CC

La connexion du circuit intermédiaire est utilisée pour une alimentation CC de secours, le circuit intermédiaire étant fourni par une source externe.

Borne	Fonction
88, 89	Bus CC

Tableau 10.2 Bornes du bus CC

10.3.3 Répartition de la charge

La répartition de la charge relie les circuits intermédiaires CC de plusieurs variateurs. Pour une vue d'ensemble, voir le chapitre 5.11 Vue d'ensemble de la répartition de la charge.

La fonction de répartition de la charge nécessite un équipement supplémentaire et implique certaines précautions en matière de sécurité. Consulter Danfoss pour passer une commande et connaître les recommandations en matière d'installation.

Borne	Fonction
88, 89	Répartition de la charge

Tableau 10.3 Bornes de répartition de la charge

Le câble de raccordement doit être blindé et la longueur maximale entre le variateur et la barre CC est limitée à 25 m (82 pi).

10.3.4 Raccordement du câble de la résistance de freinage

Le câble de raccordement à la résistance de freinage doit être blindé et la longueur maximale entre le variateur et la barre de courant continu est limitée à 25 m (82 pi).

- Utiliser des étriers de serrage pour relier le blindage à la plaque arrière conductrice du variateur et à l'armoire métallique de la résistance de freinage.
- Dimensionner la section du câble de la résistance de freinage en fonction du couple de freinage.

Borne	Fonction
81, 82	Bornes de résistance de freinage

Tableau 10.4 Bornes de résistance de freinage

Pour plus d'informations, consulter le manuel de configuration du VLT® Brake Resistor MCE 101.

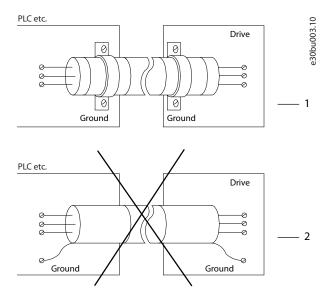
AVIS!

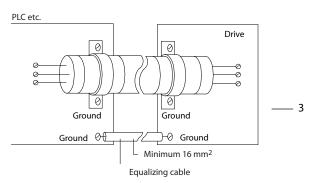
En cas de court-circuit dans le module de freinage, empêcher la dissipation excessive de puissance dans la résistance de freinage en utilisant un interrupteur de secteur ou un contacteur afin de déconnecter le variateur du secteur.

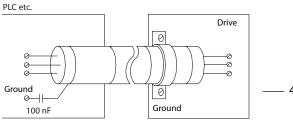
10.3.5 Connexion à un ordinateur personnel

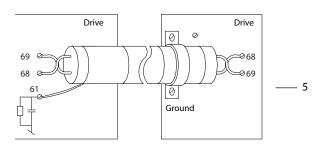
Pour contrôler le variateur à partir d'un PC, installer le logiciel de programmation MCT 10. Le PC est connecté via un câble USB standard (hôte/dispositif) ou via l'interface RS485. Pour plus d'informations sur le RS485, consulter la section *Installation et configuration de l'interface RS485* du manuel de configuration du *VLT® AQUA Drive FC 202 355-1 400 kW.*

L'USB est un bus série universel utilisant quatre fils blindés dont la broche 4 (terre) est reliée au blindage du port USB du PC. Tous les PC standard sont fabriqués sans isolation galvanique au niveau du port USB.


Pour éviter d'endommager le contrôleur hôte USB à travers le blindage du câble USB, suivre les recommandations relatives à la mise à la terre formulées dans le *manuel d'utilisation*.


Lors de la connexion du PC au variateur par un câble USB, Danfoss recommande d'utiliser un isolateur USB avec isolation galvanique pour protéger le contrôleur hôte USB du PC contre les différences de potentiel à la terre. Il est également déconseillé d'utiliser un câble de puissance PC avec une fiche de terre lorsque le PC est connecté au variateur via un câble USB. Ces recommandations permettent de réduire la différence de potentiel à la terre, mais pas de supprimer toutes les différences liées à la connexion de la terre et du blindage au port USB du PC.


10.4 Câblage et bornes de commande


Les câbles de commande doivent être blindés et le blindage doit être relié aux deux extrémités de l'armoire métallique de l'unité à l'aide d'un étrier de serrage.

Pour une mise à la terre correcte des câbles de commande, voir *Illustration 10.4*.

- Les câbles de commande et de communication série doivent être installés à l'aide d'étriers de serrage aux deux extrémités afin d'assurer le meilleur contact électrique possible.
- Ne pas utiliser des extrémités de câble torsadées (queues de cochon), car elles augmentent l'impédance du blindage aux fréquences élevées.

Si le potentiel de la terre entre le variateur et le PLC est différent, du bruit électrique peut se produire et nuire à l'ensemble du système. Installer un câble d'égalisation à côté du câble de commande. Section min. du câble : 16 mm² (6 AWG).
 En présence de câbles de commande longs, des boucles de mise à la terre de 50/60 Hz sont possibles. Relier l'une des extrémités du blindage à la terre via un condensateur 100 nF (fils courts).
 Lorsque des câbles de communication série sont utilisés,

éliminer les courants de bruit à basse fréquence entre les deux variateurs en connectant une extrémité du blindage à la borne 61. Cette borne est reliée à la terre via une liaison RC interne. Utiliser une paire torsadée afin de réduire l'interférence mode différentiel entre les conducteurs.

Illustration 10.4 Exemples de mise à la terre

10.4.1 Passage des câbles de commande

Fixer et acheminer tous les fils de commande comme indiqué sur l'*Illustration 10.5*. Ne pas oublier de raccorder correctement les blindages pour assurer une immunité électrique optimale.

- Isoler le câblage de commande des câbles haute puissance.
- Si le variateur est raccordé à une thermistance, s'assurer que le câblage de commande de la thermistance est blindé et renforcé/doublement isolé. Une tension d'alimentation de 24 V CC est recommandée.

Connexion du bus de terrain

Les connexions sont faites aux options concernées de la carte de commande. Voir les instructions pertinentes concernant le bus de terrain. Le câble doit être fixé et acheminé avec les autres fils de commande dans l'unité. Voir l'Illustration 10.5.

10

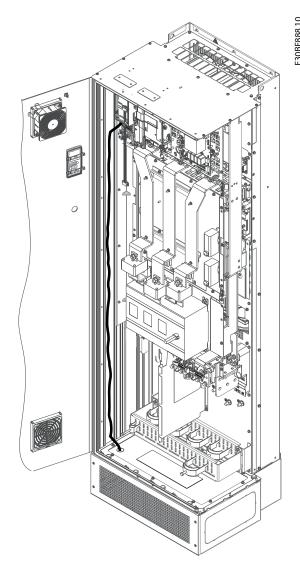


Illustration 10.5 Passage des câbles de la carte de commande pour E1h. Passage identique pour les boîtiers E2h et D1h-D8h.

10.4.2 Bornes de commande

L'Illustration 10.6 présente les connecteurs de variateur amovibles. Les fonctions des bornes et leurs réglages par défaut sont résumés du *Tableau 10.5* au *Tableau 10.7*.

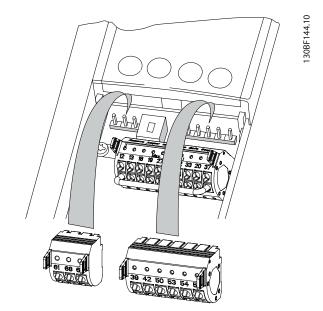
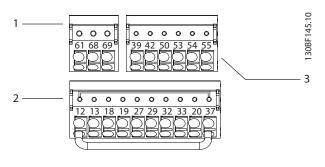



Illustration 10.6 Emplacement des bornes de commande

1	Bornes de communication série
2	Bornes d'entrée/sortie digitale
3	Bornes d'entrée/sortie analogique

Illustration 10.7 Numéros des bornes situés sur les connecteurs

Borne	Paramètre	Réglage	Description
		par défaut	
61	-	-	Filtre RC intégré pour
			la connexion du
			blindage de câble en
			cas de problèmes de
			CEM.
68 (+)	Groupe de	-	Interface RS485. Un
	paramètres 8-3*		commutateur (BUS
	Réglage Port FC		TER.) est prévu sur la
69 (-)	Groupe de	=	carte de commande
	paramètres 8-3*		pour la résistance de
	Réglage Port FC		terminaison du bus.

Tableau 10.5 Descriptions des bornes de communication série

Borne	Paramètre	Réglage	Description
		par défaut	
12, 13	_	+24 V CC	Tension d'alimen-
			tation 24 V CC des
			entrées digitales et
			des transformateurs
			externes. Le courant
			de sortie maximal est
			de 200 mA pour
			toutes les charges de
			24 V.
18	Paramétre 5-10	[8]	Entrées digitales.
	Terminal 18	Démarrage	
	Digital Input		
19	Paramétre 5-11	[10]	
	Terminal 19	Inversion	
	Digital Input		
32	Paramétre 5-14	[0] Inactif	
-	Terminal 32	[0]	
	Digital Input		
33	Paramétre 5-15	[0] Inactif	
33	Terminal 33	[O] IIIdetii	
27	Digital Input	[2] A -l	D
27	Paramétre 5-12	[2] Lâchage	Pour entrée ou sortie
	Terminal 27		digitale. Le réglage
	Digital Input		par défaut est Entrée.
29	Paramétre 5-13	[14] Jogging	
	Terminal 29		
	Digital Input		
20	-	-	Borne commune pour
			les entrées digitales
			et potentiel de 0 V
			pour l'alimentation
			24 V.
37	_	STO	Lorsque la fonction-
			nalité STO en option
			n'est pas utilisée, un
			cavalier est nécessaire
			entre la borne 12 (ou
			13) et la borne 37.
			Cela permet au
			variateur de
			fonctionner avec les
			valeurs de program-
			mation par défaut.

Tableau 10.6 Descriptions des bornes d'entrée/sortie digitale

Borne	Paramètre	Réglage par défaut	Description
39	_	-	Commune à la sortie analogique.
42	Paramétre 6-50 Terminal 42 Output	[0] Inactif	Sortie analogique programmable. 0-20 mA ou 4-20 mA à un maximum de 500 Ω .

Borne	Paramètre	Réglage	Description
		par défaut	
50	-	+10 V CC	Tension d'alimen-
			tation analogique de
			10 V CC pour un
			potentiomètre ou une
			thermistance. 15 mA
			maximum.
53	Groupe de	Référence	Entrée analogique.
	paramètres 6-1*		Pour tension ou
	Entrée ANA 1		courant. Sélectionner
54	Groupe de	Retour	mA ou V par les
	paramètres 6-2*		commutateurs A53 et
	Entrée ANA 2		A54.
55	_	-	Commun des entrées
			analogiques

Tableau 10.7 Descriptions des bornes d'entrée/sortie analogique

Bornes des relais

n	n
RELAY 1	RELAY 2
01 02 03	04 05 06

Illustration 10.8 Bornes des relais 1 et 2

- Relais 1 et 2. L'emplacement dépend de la configuration du variateur. Se reporter au manuel d'utilisation.
- Bornes sur un équipement intégré en option. Voir les instructions fournies avec l'équipement optionnel.

Borne	Paramètre	Réglage	Description
		par défaut	
01, 02, 03	Paramétre 5-40	[0] Inactif	Sortie relais RT. Pour
	Function Relay		tension CA ou CC et
	[0]		des charges résistives
04, 05, 06	Paramétre 5-40	[0] Inactif	ou inductives.
	Function Relay		
	[1]		

Tableau 10.8 Descriptions des bornes de relais

10

130BF156.10

10.5 Fusibles et disjoncteurs

L'utilisation de fusibles garantit que les dommages éventuels au variateur se limitent à des dommages internes à l'unité. Pour garantir la conformité à la norme EN 50178, utiliser les fusibles de rechange recommandés. L'utilisation de fusibles du côté alimentation est obligatoire pour les installations conformes aux normes CEI 60364 (CE) et NEC 2009 (UL).

Fusibles recommandés pour D1h-D8h

Les fusibles de type aR sont recommandés pour les boîtiers D1h-D8h. Voir le Tableau 10.9.

Modèle	380-480 V	525-690 V
N75K	-	ar-160
N90K	-	ar-315
N110K	ar-315	ar-315
N132	ar-350	ar-315
N160	ar-400	ar-315
N200	ar-500	ar-550
N250	ar-630	ar-550
N315	ar-800	ar-550
N400	-	ar-550

Tableau 10.9 Tailles de fusible semi-conducteur/de ligne pour D1h-D8h

Modèl		Options de fusible						
e	Bussman	LittelFuse	LittelFuse	Bussmann	Siba	Ferraz-	Ferraz-Shawmut	Ferraz-Shawmut
						Shawmut	(Europe)	(Amérique du
								Nord)
N110	170M2619	LA50QS300-4	L50S-300	FWH-300A	20 189 20.315	A50QS300-4	6,9URD31D08A0315	A070URD31KI0315
N132	170M2620	LA50QS350-4	L50S-350	FWH-350A	20 189 20.350	A50QS350-4	6,9URD31D08A0350	A070URD31KI0350
N160	170M2621	LA50QS400-4	L50S-400	FWH-400A	20 189 20.400	A50QS400-4	6,9URD31D08A0400	A070URD31KI0400
N200	170M4015	LA50QS500-4	L50S-500	FWH-500A	20 610 31.550	A50QS500-4	6,9URD31D08A0550	A070URD31KI0550
N250	170M4016	LA50QS600-4	L50S-600	FWH-600A	20 610 31.630	A50QS600-4	6,9URD31D08A0630	A070URD31KI0630
N315	170M4017	LA50QS800-4	L50S-800	FWH-800A	20 610 31.800	A50QS800-4	6,9URD32D08A0800	A070URD31KI0800

Tableau 10.10 Options de fusible semi-conducteur/de ligne pour D1h-D8h, 380-480 V

Modèle	Bussmann	Siba	Ferraz-Shawmut (Europe)	Ferraz-Shawmut (Amérique du Nord)
N75K	170M2616	20 610 31.160	6,9URD30D08A0160	A070URD30KI0160
N90K	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315
N110K	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315
N132	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31Kl0315
N160	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315
N200	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550
N250	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550
N315	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550
N400	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550

Tableau 10.11 Options de fusible semi-conducteur/de ligne pour D1h-D8h, 525-690 V

Bussmann	Calibre
LPJ-21/2SP	2,5 A, 600 V

Tableau 10.12 Recommandation de fusible d'appareil de chauffage pour D1h-D8h

Si le variateur ne comporte pas de sectionneur secteur, de contacteur ou de disjoncteur, le courant nominal de court-circuit (SCCR) est de 100 000 A à toutes les tensions (380-690 V).

Si le variateur comporte un sectionneur secteur, le SCCR est de 100 000 A à toutes les tensions (380-690 V).

Si le variateur comporte un disjoncteur, le SCCR dépend de la tension. Voir le Tableau 10.13.

Boîtier	415 V	480 V	600 V	690 V
D6h	120 000 A	100 000 A	65 000 A	70 000 A
D8h	100 000 A	100 000 A	42 000 A	30 000 A

Tableau 10.13 D6h et D8h avec disjoncteur

Si le variateur présente l'option contacteur seul et des fusibles externes conformément au *Tableau 10.14*, le SCCR est comme suit :

Boîtier	415 V	480 V	600 V	690 V
	CEI ¹⁾	UL ²⁾	UL ²⁾	CEI ¹⁾
D6h	100 000 A	100 000 A	100 000 A	100 000 A
D8h (sauf modèle N315 T4)	100 000 A	100 000 A	100 000 A	100 000 A
D8h (modèle N315 T4 uniquement)	100 000 A	Consulter l'usine	Non applicable	Non applicable

Tableau 10.14 D6h et D8h avec contacteur

Fusibles recommandés pour E1h-E4h

L'utilisation des fusibles répertoriés au *Tableau 10.15* convient sur un circuit capable de fournir 100 000 A_{rms} (symétriques), en fonction de la tension nominale du variateur. Avec des fusibles adaptés, le courant nominal de court-circuit du variateur (SCCR) s'élève à 100 000 A_{rms}. Les variateurs E1h et E2h sont fournis avec des fusibles internes afin de se conformer au SCCR de 100 kA et aux exigences de variateur en armoire UL 61800-5-1. Les variateurs E3h et E4h doivent être munis de fusibles de type aR afin de se conformer au SCCR de 100 kA.

Tension d'entrée (V)	Référence Bussmann
380–480	170M7309
525-690	170M7342

Tableau 10.15 Options de fusible pour E1h-E4h

Bussmann	Calibre
LPJ-21/2SP	2,5 A, 600 V

Tableau 10.16 Recommandation de fusible d'appareil de chauffage pour E1h-E2h

AVIS!

SECTIONNEUR

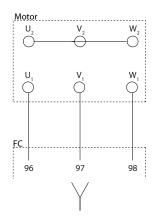
Toutes les unités commandées et fournies avec un sectionneur installé en usine nécessitent des fusibles de circuit de dérivation de classe L afin de se conformer au SCCR de 100 kA pour le variateur. Si un disjoncteur est utilisé, le SCCR nominal est de 42 kA. La tension d'entrée et le dimensionnement puissance du variateur déterminent le fusible de classe L spécifique. La tension d'entrée et le dimensionnement puissance sont indiqués sur la plaque signalétique du produit. Pour de plus amples informations sur la plaque signalétique, voir le manuel d'utilisation.

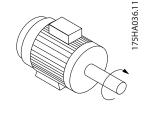
Tension d'entrée (V)	Dimensionnement	Courant de court-circuit (A)	Protection requise
	puissance [kW (HP)]		
380-480	355-450 (500-600)	42000	Disjoncteur
		100000	Fusible de classe L, 800 A
380-480	500-560 (650-750)	42000	Disjoncteur
		100000	Fusible de classe L, 1 200 A
525-690	450-630 (450-650)	40000	Disjoncteur
		100000	Fusible de classe L, 800 A
525-690	710-800 (750-950)	42000	Disjoncteur
		100000	Fusible de classe L, 1 200 A

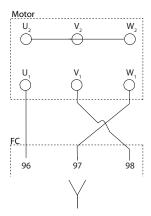
¹⁾ Avec un fusible Bussmann type LPJ-SP ou Gould Shawmut type AJT. Taille de fusible 450 A max. pour D6h et 900 A max. pour D8h.

²⁾ Il faut utiliser des fusibles de dérivation de classe J ou L pour l'homologation UL. Taille de fusible 450 A max. pour D6h et 600 A max. pour D8h.

10.6 Moteur


Tous les moteurs asynchrones triphasés standard peuvent être utilisés avec un variateur.


Borne	Fonction
96	U/T1
97	V/T2
98	W/T3
99	Terre


Tableau 10.17 Bornes du câble du moteur assurant une rotation dans le sens horaire (réglage d'usine par défaut)

Le sens de rotation peut être modifié en inversant deux phases côté moteur ou en changeant le réglage du paramétre 4-10 Motor Speed Direction.

Le contrôle de la rotation du moteur peut être effectué à l'aide du *paramétre 1-28 Motor Rotation Check* et en suivant les étapes indiquées dans l'*Illustration 10.9*.

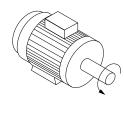


Illustration 10.9 Changement de la rotation du moteur

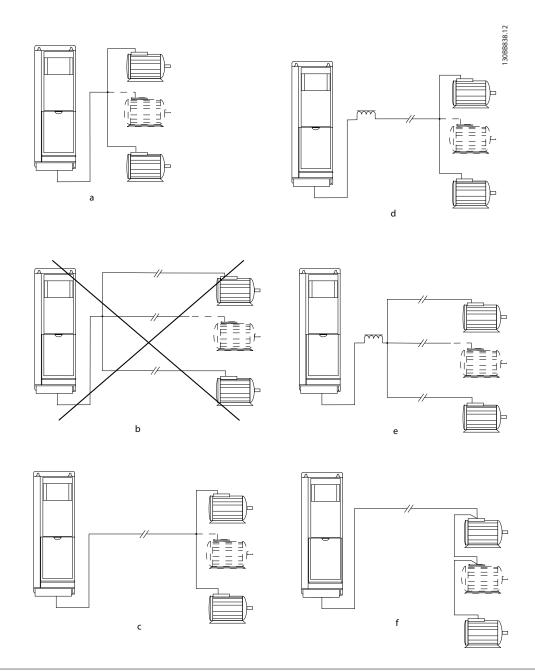
10.6.1 Protection thermique du moteur

Le relais thermique électronique du variateur a reçu une certification UL pour la protection unique du moteur contre la surcharge, lorsque le *paramétre 1-90 Motor*

Thermal Protection est réglé sur ETR Alarme et le paramétre 1-24 Motor Current est réglé sur le courant nominal du moteur (voir la plaque signalétique du moteur).

Pour la protection thermique du moteur, il est également possible d'utiliser l'option VLT® PTC Thermistor Card MCB 112. Cette carte offre une garantie ATEX pour protéger les moteurs dans les zones potentiellement explosives Zone 1/21 et Zone 2/22. Lorsque le *paramétre 1-90 Motor Thermal Protection* réglé sur [20] ATEX ETR est combiné avec l'option MCB 112, il est alors possible de contrôler un moteur Ex-e dans des zones potentiellement explosives. Consulter le guide de programmation pour obtenir un complément d'informations sur la configuration du variateur pour un fonctionnement en toute sécurité des moteurs Ex-e.

10.6.2 Montage des moteurs en parallèle


Le variateur est capable de contrôler plusieurs moteurs connectés en parallèle. Pour connaître les différentes configurations de moteurs connectés en parallèle, voir l'Illustration 10.10.

Il convient de noter les points suivants en cas d'utilisation d'un raccordement en parallèle des moteurs :

- Faire fonctionner des applications avec moteurs parallèles en mode U/F (Volt par Hertz).
- Le mode VVC⁺ peut être utilisé dans certaines applications.
- La consommation totale de courant des moteurs ne peut pas excéder le courant nominal de sortie l_{INV} pour le variateur.
- Des problèmes peuvent survenir au démarrage et à vitesse réduite, si les dimensions des moteurs sont très différentes, parce que la résistance ohmique relativement grande dans le stator des petits moteurs entraîne une tension supérieure au démarrage et à vitesse réduite.
- Le relais thermique électronique (ETR) du variateur ne peut pas être utilisé comme protection du moteur contre la surcharge. Une protection additionnelle du moteur contre la surcharge doit être prévue en intégrant des thermistances dans chaque moteur ou dans les relais thermiques individuels.
- Quand les moteurs sont connectés en parallèle, le paramétre 1-02 Flux Motor Feedback Source ne peut pas être utilisé et le paramétre 1-01 Motor Control Principle doit être réglé sur [0] U/f.

Danfvšš

	longueurs de câble courtes.
Α	Les installations avec câbles connectés en un point commun comme indiqué en A et B sont uniquement recommandées pour des

- B Tenir compte de la longueur de câble du moteur maximale indiquée au chapitre 7.6 Spécifications du câble.
- C La longueur totale de câble du moteur spécifiée dans le *chapitre 7.6 Spécifications du câble* est valable tant que les câbles parallèles restent inférieurs à 10 m (32 pi) chacun.
- D Tenir compte de la chute de tension dans les câbles du moteur.
- E Tenir compte de la chute de tension dans les câbles du moteur.
- F La longueur totale de câble du moteur spécifiée dans le *chapitre 7.6 Spécifications du câble* est valable tant que les câbles parallèles restent inférieurs à 10 m (32 pi) chacun.

Illustration 10.10 Divers raccordements en parallèle des moteurs

10.6.3 Isolation du moteur

Pour des longueurs de câble du moteur inférieures ou égales à la longueur de câble maximale répertoriée dans le *chapitre 7.6 Spécifications du câble*, utiliser l'isolation de moteur nominale indiquée dans le *Tableau 10.18*. Si un moteur présente une valeur d'isolation nominale inférieure, Danfoss recommande d'utiliser un filtre dU/dt ou sinus.

Tension secteur nominale	Isolation du moteur		
U _N ≤420 V	U _{LL} standard = 1 300 V		
420 V <u<sub>N≤ 500 V</u<sub>	U _{LL} renforcée = 1 600 V		
500 V <u<sub>N≤ 600 V</u<sub>	U _{LL} renforcée = 1 800 V		
600 V <u<sub>N≤ 690 V</u<sub>	U _{LL} renforcée = 2 000 V		

Tableau 10.18 Caractéristiques de l'isolation du moteur

10.6.4 Courants des paliers de moteur

Pour éliminer les courants de palier circulant dans tous les moteurs installés avec le variateur, installer des paliers isolés côté opposé à l'accouplement. Pour minimiser les courants de paliers et d'arbre, veiller à une mise à la terre correcte du variateur, du moteur, de la machine entraînée et du moteur à la machine entraînée.

Stratégies d'atténuation standard :

- Utiliser un palier isolé.
- Suivre les procédures d'installation adéquates.
 - Veiller à ce que le moteur et la charge moteur soient alignés.
 - Respecter la réglementation CEM.
 - Renforcer le PE de façon à ce que l'impédance haute fréquence soit inférieure dans le PE aux fils d'alimentation d'entrée.
 - Veiller à la bonne connexion haute fréquence entre le moteur et le variateur. Utiliser un câble blindé muni d'un raccord à 360° dans le moteur et le variateur.
 - Veiller à ce que l'impédance entre le variateur et la mise à la terre soit inférieure à l'impédance de la mise à la terre de la machine. Cela peut s'avérer difficile pour les pompes.
 - Procéder à une mise à la terre directe entre le moteur et la charge moteur.
- Abaisser la fréquence de commutation de l'IGBT.
- Modifier la forme de l'onde de l'onduleur, 60°
 AVM au lieu de SFAVM.
- Installer un système de mise à la terre de l'arbre ou utiliser un accouplement isolant.

- Appliquer un lubrifiant conducteur.
- Utiliser si possible des réglages minimum de la vitesse.
- Veiller à ce que la tension secteur soit équilibrée par rapport à la terre. Cela peut s'avérer difficile pour les réseaux IT, TT, TN-CS ou les systèmes de colonne mis à la terre.
- Utiliser un filtre dU/dt ou sinus.

10.7 Freinage

10.7.1 Sélection des résistances de freinage

Dans certaines applications, p. ex. sur les systèmes de ventilation des tunnels ou des stations de métro, il convient de pouvoir stopper le moteur plus rapidement que par un contrôle via une décélération de rampe ou une mise en roue libre. Dans ces applications, on utilise généralement un freinage dynamique avec une résistance de freinage. L'utilisation d'une résistance de freinage garantit que l'énergie est absorbée par celle-ci et non par le variateur. Pour plus d'informations, consulter le manuel de configuration de la résistance VLT® Brake Resistor MCE 101.

Si la quantité d'énergie cinétique transférée à la résistance à chaque période de freinage est inconnue, la puissance moyenne peut être calculée à partir du temps de cycle et du temps de freinage (cycle d'utilisation intermittent). Le cycle d'utilisation intermittent de la résistance indique le cycle d'utilisation pendant lequel la résistance est active. L'Illustration 10.11 représente un cycle de freinage typique.

Les fournisseurs de moteurs utilisent souvent S5 pour indiquer la charge autorisée qui correspond au cycle d'utilisation intermittent. Le cycle d'utilisation intermittent de la résistance est calculé comme suit :

Cycle d'utilisation = t_b/T

T= temps de cycle en secondes t_b est le temps de freinage en secondes (du temps de cycle)

<u>Danfoss</u>

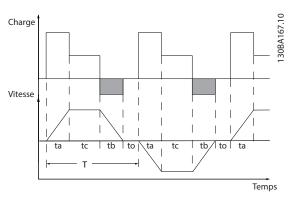


Illustration 10.11 Cycle de freinage type

		Modèle						
	N110K	N132	N160	N200	N250	N315		
Temps de cycle (s)	600	600	600	600	600	600		
Cycle d'utilisation du	Continu	Continu	Continu	Continu	Continu	Continu		
freinage au couple de								
100 %								
Cycle d'utilisation du	10%	10%	10%	10%	10%	10%		
freinage au couple de								
150/160 %								

Tableau 10.19 Capacité de freinage pour D1h-D8h, 380-480 V

				Modèle		
		N355	N400	N450	N500	N560
Freinage nominal	Temps de cycle (s)	600	600	600	600	600
[45 °C (113 °F)]	Courant (%)	100	70	62	56	80
	Temps de freinage (s)	240	240	240	240	240
Freinage de surcharge	Temps de cycle (s)	300	300	300	300	300
[45 °C (113 °F)]	Courant (%)	136	92	81	72	107
	Temps de freinage (s)	30	30	30	30	30
Freinage nominal	Temps de cycle (s)	600	600	600	600	600
[25 °C (77 °F)]	Courant (%)	100	92	81	89	80
	Temps de freinage (s)	240	240	240	240	240
Freinage de surcharge	Temps de cycle (s)	300	300	300	300	300
[25 °C (77 °F)]	Courant (%)	136	113	100	72	107
	Temps de freinage (s)	30	10	10	30	30

Tableau 10.20 Capacité de freinage pour E1h-E4h, 380-480 V

		Modèle							
	N75K	N90K	N110K	N132	N160	N200	N250	N315	N400
Temps de cycle	600	600	600	600	600	600	600	600	600
(s)									
Cycle d'utili-	40	40	40	40	40	40	40	40	40
sation du									
freinage au									
couple de 100 %									
Cycle d'utili-	10	10	10	10	10	10	10	10	10
sation du									
freinage au									
couple de									
150/160 %									

Tableau 10.21 Capacité de freinage pour D1h-D8h, 525-690 V

				Мо	dèle		
		N450	N500	N560	N630	N710	N800
Freinage nominal	Temps de cycle (s)	600	600	600	600	600	600
[45 °C (113 °F)]	Courant (%)	89	79	63	63	71	63
	Temps de freinage	240	240	240	240	240	240
	(s)						
Freinage de surcharge	Temps de cycle (s)	300	300	300	300	300	300
[45 °C (113 °F)]	Courant (%)	113	100	80	80	94	84
	Temps de freinage	30	30	30	30	30	30
	(s)						
Freinage nominal	Temps de cycle (s)	600	600	600	600	600	60
[25 °C (77 °F)]	Courant (%)	89	79	63	63	71	63
	Temps de freinage	240	240	240	240	240	240
	(s)						
Freinage de surcharge	Temps de cycle (s)	300	300	300	300	300	300
[25 °C (77 °F)]	Courant (%)	113	100	80	80	94	84
	Temps de freinage (s)	30	30	30	30	30	30

Tableau 10.22 Capacité de freinage pour E1h-E4h, 525-690 V

Danfoss propose des résistances de freinage avec des cycles d'utilisation de 5 %, 10 % et 40 %. Si un cycle d'utilisation de 10 % est appliqué, les résistances de freinage sont capables d'absorber la puissance de freinage pendant 10 % du temps de cycle. Les 90 % restants du temps de cycle sont utilisés pour évacuer la chaleur excédentaire.

AVIS!

Vérifier que la résistance est conçue pour gérer le temps de freinage requis.

La charge maximale autorisée pour la résistance de freinage est indiquée comme une puissance de pointe à un cycle d'utilisation intermittent donné. La valeur de la résistance de freinage est calculée comme suit :

$$R_{fr}\left[\Omega\right] = \frac{U_{cc}^2}{P_{pointe}}$$

 $P_{pointe} = P_{moteur} \times M_{fr}$ [%] $\times \eta_{moteur} \times \eta_{VLT}[W]$

Comme indiqué, la résistance de freinage dépend de la tension du circuit intermédiaire (Ucc).

Tension	Frein actif	Avertissement avant coupure	Déclen- chement
380-480 V ¹⁾	810 V	828 V	855 V
525–690 V	1 084 V	1 109 V	1 130 V

Tableau 10.23 Limites de freinage FC 102

1) Selon la puissance

AVIS!

Vérifier que la résistance de freinage peut supporter une tension de 410 V, 820 V, 850 V, 975 V ou 1 130 V. Les résistances de freinage Danfoss sont adaptées à une utilisation sur tous les variateurs Danfoss.

Danfoss recommande la résistance de freinage R_{rec}. Ce calcul garantit que le variateur peut freiner au couple de freinage le plus élevé (M_{fr(%)}) de 150 %. La formule peut s'écrire :

$$R_{rec}\left[\Omega\right] = \frac{U_{cc}^2 \, x \, 100}{P_{moteur} \, x \, M_{fr\,(\%)} \, x \eta_{vLT} \, x \, \eta_{moteur}}$$

La valeur typique de η_{moteur} est de 0,90. La valeur typique de η_{VLT} est de 0,98.

Pour les variateurs 200 V, 480 V, 500 V et 600 V, R_{rec} à un couple de freinage de 160 % s'écrit comme suit :

$$200V:R_{rec}\,=\,\frac{107780}{P_{moteur}}\,[\Omega]$$

$$500V:R_{rec}=~\frac{464923}{P_{moteur}}\left[\Omega\right]$$

$$600V: R_{rec} = \frac{630137}{P_{moteur}} [\Omega]$$

$$600V : R_{rec} = \frac{630137}{P_{moteur}} [\Omega]$$

 $690V : R_{rec} = \frac{832664}{P_{moteur}} [\Omega]$

AVIS!

La résistance du circuit de freinage sélectionnée ne doit pas être supérieure à celle recommandée par Danfoss. Les boîtiers de tailles E1h-E4h contiennent 1 hacheur de freinage.

AVIS!

En cas d'apparition d'un court-circuit dans le transistor de freinage, ou d'un défaut de mise à la terre dans le câblage ou module de freinage, on n'empêche la dissipation de puissance dans la résistance de freinage qu'en utilisant un interrupteur de secteur ou un contacteur afin de déconnecter le secteur du variateur ou d'un contact dans le circuit de freinage. Une dissipation de puissance ininterrompue dans la résistance de freinage peut causer une surchauffe, des dommages ou un incendie.

▲AVERTISSEMENT

RISQUE D'INCENDIE

Les résistances de freinage s'échauffent pendant/après le freinage, et doivent donc être placées correctement dans un endroit sûr pour éviter toute blessure grave ou tout dommage matériel.

 Placer la résistance de freinage dans un environnement sécurisé, à l'abri de tout contact accidentel et d'objets inflammables.

10.7.2 Contrôle avec la fonction de freinage

On peut utiliser un relais/une sortie digitale pour protéger la résistance de freinage contre la surcharge ou la surchauffe en générant une panne du variateur. Si le hacheur de freinage (IGBT) est en surcharge ou en surchauffe, le signal de relais/digital allant du frein au variateur arrête le hacheur de freinage. Ce signal de relais/digital ne protège pas contre un court-circuit du hacheur de freinage (IGBT) ou d'un défaut de mise à la terre dans le câblage ou le module de frein. Si un court-circuit se produit dans le hacheur de freinage (IGBT), Danfoss recommande un moyen de déconnecter le frein.

Le frein permet également d'afficher la puissance instantanée et la puissance moyenne des 120 dernières secondes et de surveiller que la puissance dégagée ne dépasse pas la limite définie au paramétre 2-12 Brake Power Limit (kW). Le Paramétre 2-13 Brake Power Monitoring sélectionne la fonction à exécuter lorsque la puissance transmise à la résistance de freinage dépasse la limite définie au paramétre 2-12 Brake Power Limit (kW).

AVIS!

La surveillance de la puissance de freinage n'est pas une fonction de sécurité, cette dernière nécessitant un thermocontact relié à un contacteur externe. Le circuit de la résistance de freinage n'est pas protégé contre les fuites à la terre.

Le contrôle de surtension (OVC) peut être sélectionné comme fonction de freinage de remplacement au

paramétre 2-17 Over-voltage Control. Cette fonction est active pour toutes les unités et assure qu'en cas d'augmentation de la tension du circuit intermédiaire, la fréquence de sortie augmente également afin de limiter la tension du circuit intermédiaire, évitant ainsi un arrêt.

AVIS!

OVC ne peut pas être activé lors du fonctionnement d'un moteur PM, si le paramétre 1-10 Motor Construction est réglé sur [1]PM, SPM non saillant.

10.8 Relais de protection différentielle (RCD) et dispositif de surveillance de la résistance d'isolation (IRM)

Utiliser des relais de protection différentielle (RCD), une mise à la terre multiple ou une mise à la terre en tant que protection supplémentaire, à condition de respecter les réglementations de sécurité locales.

Un défaut de mise à la terre peut introduire un courant CC dans le courant de fuite. Si des relais RCD sont utilisés, les réglementations locales doivent être respectées. Les relais doivent convenir à la protection d'équipements triphasés avec pont redresseur et décharge courte lors de la mise sous tension. Voir le *chapitre 10.9 Courant de fuite* pour plus de détails.

10.9 Courant de fuite

Respecter les réglementations locales et nationales concernant la protection par mise à la terre de l'équipement en cas de courant de fuite supérieur à 3,5 mA. La technologie du variateur implique une commutation haute fréquence à haute puissance. Cette commutation haute fréquence génère un courant de fuite dans la mise à la terre.

Le courant de fuite à la terre provient de plusieurs sources et dépend des différentes configurations du système, notamment :

- filtrage RFI ;
- longueur de câble du moteur ;
- blindage du câble moteur ;
- alimentation du variateur.

10

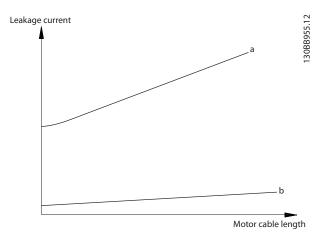


Illustration 10.12 Influence de la longueur de câble du moteur et du dimensionnement puissance sur le courant de fuite. Puissance a > puissance b.

Le courant de fuite dépend également de la distorsion de la ligne.

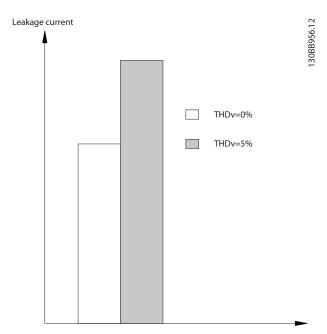


Illustration 10.13 Influence de la distorsion de la ligne sur le courant de fuite

Si le courant de fuite dépasse 3,5 mA, le respect de la norme EN/CEI 61800-5-1 (norme produit concernant les entraînements électriques de puissance) exige une attention particulière.

Renforcer la mise à la terre avec les exigences suivantes en matière de protection par mise à la terre :

- Fil de mise à la terre (borne 95) d'au moins 10 mm² (8 AWG) de section.
- Deux fils de terre séparés respectant les consignes de dimensionnement.

Voir les normes EN/CEI 61800-5-1 et EN 50178 pour plus d'informations.

Utilisation de RCD

Lorsque des relais de protection différentielle (RCD), aussi appelés disjoncteurs de fuite à la terre (ELCB), sont utilisés, respecter les éléments suivants :

- Utiliser les RCD de type B capables de détecter les courants CA et CC.
- Utiliser des RCD avec un retard pour éviter les pannes dues aux courants à la terre transitoires.
- Dimensionner les RCD selon la configuration du système et en tenant compte de l'environnement d'installation.

Le courant de fuite comprend plusieurs fréquences provenant de la fréquence secteur et de la fréquence de commutation. La détection de la fréquence de commutation dépend du type de RCD utilisé.

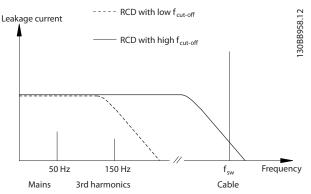


Illustration 10.14 Sources principales du courant de fuite

La quantité de courant de fuite détectée par les RCD dépend de la fréquence de coupure des RCD.

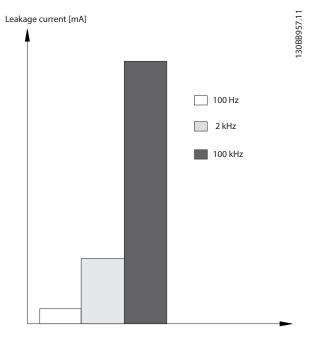


Illustration 10.15 Influence de la fréquence de coupure des RCD sur le courant de fuite

10.10 Secteur IT

Alimentation secteur isolée de la terre

Si le variateur est alimenté par une source électrique isolée (réseau IT, triangle isolé de la terre ou triangle mis à la terre) ou un réseau TT/TN-S avec triangle mis à la terre, il est recommandé de désactiver le commutateur RFI via le paramétre 14-50 RFI Filter sur le variateur et le paramétre 14-50 RFI Filter sur le filtre. Pour plus de détails, voir la norme CEI 364-3. En position OFF, les condensateurs de filtrage entre le châssis et le circuit intermédiaire sont coupés pour éviter d'endommager le circuit intermédiaire et pour réduire les courants à effet de masse, selon la norme CEI 61800-3.

Si une performance CEM optimale est exigée, si des moteurs parallèles sont connectés ou si la longueur des câbles du moteur est supérieure à 25 m (82 pi), Danfoss recommande de régler le *paramétre 14-50 RFI Filter* sur [Actif]. Voir aussi la *Note applicative, VLT® sur réseau IT.* Il est important d'utiliser des moniteurs d'isolement compatibles avec l'électronique de puissance (CEI 61557-8).

Danfoss ne recommande pas d'utiliser un contacteur de sortie pour les variateurs 525–690 V reliés à un réseau IT.

10.11 Rendement

Rendement du variateur (η_{VLT})

La charge du variateur a peu d'influence sur son rendement. En général, le rendement résultant de la fréquence nominale du moteur f_{M,N} est identique, que le moteur développe un couple nominal sur l'arbre de 100 % ou de 75 %, avec une charge partielle.

Le rendement du variateur n'est pas modifié même si d'autres caractéristiques U/f sont sélectionnées. Ces dernières affectent cependant le rendement du moteur.

Le rendement baisse légèrement lorsque la fréquence de commutation est réglée sur une valeur supérieure à 5 kHz. Le rendement baisse également un peu en présence d'une tension secteur de 480 V ou d'un câble du moteur dont la longueur dépasse 30 m (98 pi).

Calcul du rendement du variateur

Calculer le rendement du variateur à différentes vitesses et charges selon l'Illustration 10.16. Le facteur de ce graphique doit être multiplié par le facteur de rendement spécifique répertorié dans les tableaux de spécifications au chapitre 7.1 Données électriques, 380-480 V et au chapitre 7.2 Données électriques, 525-690 V.

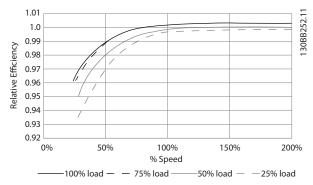


Illustration 10.16 Courbes de rendement typique

Exemple: prenons comme hypothèse un variateur de fréquence 160 kW, 380-480 V CA avec une charge de 25 % à 50 % de la vitesse. L'*Illustration 10.16* indique 0,97; le rendement nominal d'un variateur 160 kW est de 0,98. Le rendement réel est donc: 0,97 x 0,98 = 0,95.

Rendement du moteur (nmoteur)

Le rendement d'un moteur raccordé à un variateur est lié au niveau de magnétisation. D'une manière générale, on peut dire que ce rendement est comparable à celui qui résulte d'une exploitation alimentée par le secteur. Le rendement du moteur dépend de son type.

Dans la plage de 75 à 100 % du couple nominal, le rendement du moteur est pratiquement constant dans le cas d'une exploitation avec le variateur et avec l'alimentation directe sur secteur.

Lorsque l'on utilise des petits moteurs, l'influence de la caractéristique U/f sur le rendement est marginale, mais avec des moteurs de 11 kW (14,75 HP) et plus, les avantages sont significatifs.

La fréquence de commutation n'affecte généralement pas le rendement des petits moteurs. Le rendement des moteurs à partir de 11 kW (14,75 HP) est amélioré (1–2 %), puisque la sinusoïde du courant du moteur est presque parfaite à fréquence de commutation élevée.

10

Rendement du système (ηsystème)

Pour calculer le rendement du système, multiplier le rendement du variateur (η_{VLT}) par le rendement du moteur (η_{MOTEUR}):

 $\eta_{\text{SYSTÈME}} = \eta_{\text{VLT}} \; x \; \eta_{\text{MOTEUR}}$

10.12 Bruit acoustique

Le bruit acoustique du variateur a 3 sources :

- Bobines du circuit intermédiaire CC.
- Ventilateurs internes.
- Inductance du filtre RFI.

Le *Tableau 10.24* répertorie les valeurs de bruit acoustique typiques mesurées à une distance d'1 m (9 pi) de l'unité.

Taille de boîtier	dBA à vitesse maximale du ventilateur
D1h/D3h/D5h/D6h	73
D2h/D4h/D7h/D8h	75
E1h–E4h	80

Tableau 10.24 Bruit acoustique

Résultats des essais effectués conformément à ISO 3744 pour déterminer l'intensité des niveaux de bruit dans un environnement contrôlé. La tonalité du bruit a été quantifiée à des fins d'enregistrement de données techniques et de performances du matériel, conformément à ISO 1996-2 Annexe D.

Un nouvel algorithme de commande du ventilateur pour les boîtiers de tailles E1h-E4h améliore les performances sonores en permettant à l'opérateur de sélectionner différents modes de fonctionnement du ventilateur en fonction de conditions spécifiques. Voir le paramétre 30-50 Heat Sink Fan Mode pour plus d'informations.

10.13 Conditions dU/dt

AVIS!

Pour éviter le vieillissement prématuré des moteurs non prévus pour l'exploitation d'un variateur, par exemple les moteurs sans papier d'isolation de phase ou autre renforcement d'isolation, Danfoss recommande vivement de placer un filtre dU/dt ou un filtre sinus à la sortie du variateur. Pour plus d'informations sur les filtres dU/dt et sinus, se reporter au manuel de configuration des filtres de sortie.

Quand un transistor est activé dans le pont de l'onduleur, la tension appliquée au moteur augmente selon un rapport dU/dt dépendant du câble du moteur (type, section, longueur blindée ou non) et de l'inductance.

L'auto-induction provoque un pic de tension du moteur U_{PIC} avant de se stabiliser à un niveau déterminé par la tension présente dans le circuit intermédiaire. Le temps de montée et le pic de tension U_{PIC} influencent tous deux la durée de vie du moteur. Un pic de tension trop élevé affecte particulièrement les moteurs dépourvus d'isolation de bobines entre phases. La longueur des câbles de moteur affecte le temps de montée et le pic de tension. Sur les câbles de moteur de faible longueur (quelques mètres), le temps de montée et le pic de tension sont plus faibles. Sur les câbles de moteur de grande longueur (100 m (328 pi)), le temps de montée et le pic de tension sont plus élevés.

Le pic de tension sur les bornes du moteur est causé par l'activation des hacheurs de freinage (IGBT). Le variateur est conforme aux exigences de la norme CEI 60034-25:2007 édition 2.0 concernant les moteurs conçus pour être contrôlés par des variateurs. Le variateur est également conforme à la norme CEI 60034-17:2006 édition 4 concernant les moteurs standard contrôlés par des variateurs.

Gamme de forte puissance

Les puissances indiquées du *Tableau 10.25* au *Tableau 10.36* aux tensions secteur appropriées sont conformes aux exigences de la norme CEI 60034-17:2006 édition 4 en matière de moteurs standard contrôlés par des variateurs, de la norme CEI 60034-25:2007 édition 2.0 en matière de moteurs conçus pour être contrôlés par des variateurs, et de NEMA MG 1-1998 Partie 31.4.4.2 pour les moteurs alimentés par onduleur. Les puissances indiquées du *Tableau 10.25* au *Tableau 10.36* ne satisfont pas aux exigences NEMA MG 1-1998 Partie 30.2.2.8 pour les moteurs à usage général.

10

10.13.1 Résultats des essais dU/dt pour les boîtiers D1h-D8h

Résultats des essais pour 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/μs]
		[V]	[µs]		
110–160 (150–250)	30 (98)	500	0,26	1180	2109
	150 (492)	500	0,21	1423	3087
	300 (984)	500	0,56	1557	1032
200–315 (300–450)	30 (98)	500	0,63	1116	843
	150 (492)	500	0,80	1028	653
	300 (984)	500	0,71	835	651

Tableau 10.25 Résultats des essais dU/dt NEMA pour D1h-D8h avec câbles non blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
110–160 (150–250)	30 (98)	500	0,71	1180	1339
	150 (492)	500	0,76	1423	1497
	300 (984)	500	0,91	1557	1370
200–315 (300–450)	30 (98)	500	1,10	1116	815
	150 (492)	500	2,53	1028	321
	300 (984)	500	1,29	835	517

Tableau 10.26 Résultats des essais dU/dt CEI pour D1h-D8h avec câbles non blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
110-160 (150-250)	30 (98)	500	-	_	-
	150 (492)	500	0,28	1418	2105
	300 (984)	500	0,21	1530	2450
200–315 (300–450)	30 (98)	500	-	=	-
	150 (492)	500	0,23	1261	2465
	300 (984)	500	0,96	1278	597

Tableau 10.27 Résultats des essais dU/dt NEMA pour D1h-D8h avec câbles blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
110–160 (150–250)	30 (98)	500	-	-	-
	150 (492)	500	0,66	1418	1725
	300 (984)	500	0,96	1530	1277
200–315 (300–450)	30 (98)	500	_	-	_
	150 (492)	500	0,56	1261	1820
	300 (984)	500	0,78	1278	1295

Tableau 10.28 Résultats des essais dU/dt CEI pour D1h-D8h avec câbles blindés et sans filtre de sortie, 380-480 V

Résultats des essais pour 525-690 V

NEMA ne fournit pas les résultats dU/dt pour 690 V.

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
75–160 (75–200)	30 (98)	690	-	-	-
	150 (492)	690	1,11	2135	1535
	300 (984)	690	1,28	2304	1433
200-400 (250-400)	30 (98)	690	-	-	-
	150 (492)	690	0,42	996	1885
	300 (984)	690	1,38	2163	1253

Tableau 10.29 Résultats des essais dU/dt CEI pour D1h-D8h avec câbles non blindés et sans filtre de sortie, 525-690 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/μs]
		[V]	[µs]		
75–160 (75–200)	30 (98)	690	-	-	_
	150 (492)	690	1,03	2045	1590
	300 (984)	690	1,41	2132	1217
200–400 (250–400)	30 (98)	690	-	-	_
	150 (492)	690	1,00	2022	1617
	300 (984)	690	1,15	2097	1459

Tableau 10.30 Résultats des essais dU/dt CEI pour D1h-D8h avec câbles blindés et sans filtre de sortie, 525-690 V

10.13.2 Résultats des essais dU/dt pour les boîtiers E1h-E4h

Résultats des essais pour 380-480 V

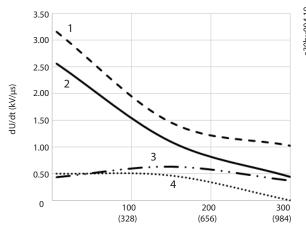
Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
355–450 (500–600)	5 (16)	460	0,23	1038	2372
	30 (98)	460	0,72	1061	644
	150 (492)	460	0,46	1142	1160
	300 (984)	460	1,84	1244	283
500-560 (650-750)	5 (16)	460	0,42	1042	1295
	30 (98)	460	0,57	1200	820
	150 (492)	460	0,63	1110	844
	300 (984)	460	2,21	1175	239

Tableau 10.31 Résultats des essais dU/dt NEMA pour E1h-E4h avec câbles non blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
355-450 (500-600)	5 (16)	460	0,33	1038	2556
	30 (98)	460	1,27	1061	668
	150 (492)	460	0,84	1142	1094
	300 (984)	460	2,25	1244	443
500-560 (650-750)	5 (16)	460	0,53	1042	1569
	30 (98)	460	1,22	1200	1436
	150 (492)	460	0,90	1110	993
	300 (984)	460	2,29	1175	411

Tableau 10.32 Résultats des essais dU/dt CEI pour E1h-E4h avec câbles non blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
355-450 (500-600)	5 (16)	460	0,17	1017	3176
	30 (98)	460	-	-	_
	150 (492)	460	0,41	1268	1311
500-560 (650-750)	5 (16)	460	0,17	1042	3126
	30 (98)	460	-	-	_
	150 (492)	460	0,22	1233	2356


Tableau 10.33 Résultats des essais dU/dt NEMA pour E1h-E4h avec câbles blindés et sans filtre de sortie, 380-480 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
355-450 (500-600)	5 (16)	460	0,26	1017	3128
	30 (98)	460	-	=	-
	150 (492)	460	0,70	1268	1448
500–560 (650–750)	5 (16)	460	0,27	1042	3132
	30 (98)	460	-	=	-
	150 (492)	460	0,52	1233	1897

Tableau 10.34 Résultats des essais dU/dt CEI pour E1h-E4h avec câbles blindés et sans filtre de sortie, 380-480 V

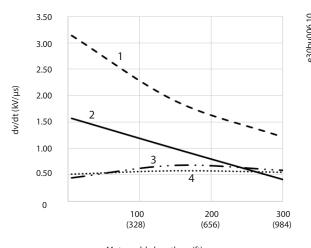
Illustration 10.17–Illustration 10.20 montrent le régime de hausse de la tension et les pics de tension typiques au niveau des bornes du moteur, pour des câbles blindés ou non dans diverses configurations.

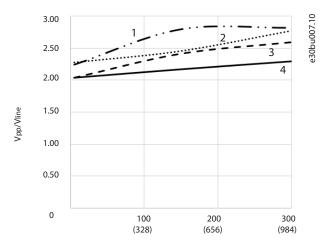
Ces valeurs reflètent un fonctionnement en état stable et à la plage de tension d'entrée efficace de la V_{line} du variateur. Lorsque le variateur fonctionne en mode de freinage, la tension du circuit intermédiaire augmente de 20 %. Cet effet est similaire à une augmentation de la tension secteur de 20 %. Prendre en compte cette hausse de tension lors de l'analyse de l'isolation du moteur pour les applications de freinage.

Motor	cable	length,	m (f	t)

	3.00	1	—	
	2.50			1
	2.00	2	3	1
Vpp/Vline	1.50	2	3	4
Λpp	1.00			
	0.50			
	0	100 (328)	200 (656)	300 (984)

Motor cable length, m (ft)


1	Câble non blindé sans filtre
2	Câble blindé sans filtre
3	Câble non blindé avec filtre dU/dt
4	Câble blindé avec filtre dU/dt


Illustration 10.17 dU/dt au niveau des bornes du moteur pour les boîtiers E1h/E3h, 380–480 V

1	Câble non blindé avec filtre dU/dt
2	Câble blindé avec filtre dU/dt
3	Câble blindé sans filtre
4	Câble non blindé sans filtre

Illustration 10.18 Pics de tension au niveau des bornes du moteur pour les boîtiers E1h/E3h, 380–480 V

Motor cable length, m (ft)

1	Câble blindé sans filtre
2	Câble non blindé sans filtre
3	Câble non blindé avec filtre dU/dt
4	Câble blindé avec filtre dU/dt

Motor cable length, m (ft)

1	Câble non blindé avec filtre dU/dt
2	Câble blindé avec filtre dU/dt
3	Câble blindé sans filtre
4	Câble non blindé sans filtre

Illustration 10.19 Pics de tension au niveau des bornes du moteur pour les boîtiers E2h/E4h, 380-480 V

Illustration 10.20 Pics de tension au niveau des bornes du moteur pour les boîtiers E2h/E4h, 380-480 V

Résultats des essais pour 525-690 V

NEMA ne fournit pas les résultats dU/dt pour 690 V.

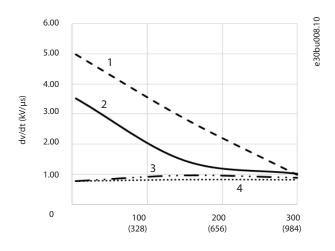
Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
450-630 (450-650)	30 (98)	690	0,37	1625	3494
	50 (164)	690	0,86	2030	1895
710–800 (750–950)	5 (16)	690	0,25	1212	3850
	20 (65)	690	0,33	1525	3712
	50 (164)	690	0,82	2040	1996

Tableau 10.35 Résultats des essais dU/dt CEI pour E1h-E4h avec câbles non blindés et sans filtre de sortie, 525-690 V

Puissance [kW (HP)]	Câble [m (pi)]	Tension secteur	Temps de montée	Pic de tension [V]	dU/dt [V/µs]
		[V]	[µs]		
450–630 (450–650)	5 (16)	690	0,23	1450	5217
	48 (157)	690	0,38	1637	3400
	150 (492)	690	0,94	1762	1502
710–800 (750–950)	5 (16)	690	0,26	1262	3894
	48 (157)	690	0,46	1625	2826
	150 (492)	690	0,94	1710	1455

Tableau 10.36 Résultats des essais dU/dt CEI pour E1h-E4h avec câbles blindés et sans filtre de sortie, 525-690 V

Illustration 10.21–Illustration 10.24 montrent le régime de hausse de la tension et les pics de tension typiques au niveau des bornes du moteur, pour des câbles blindés ou non dans diverses configurations.

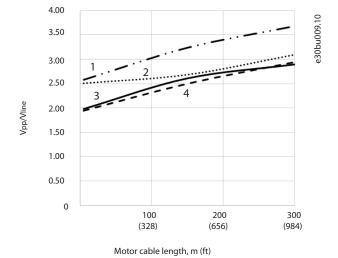

Ces valeurs reflètent un fonctionnement en état stable et à la plage de tension d'entrée efficace de la V_{line} du variateur. Lorsque le variateur fonctionne en mode de freinage, la tension du circuit intermédiaire augmente de 20 %. Cet effet est

10

similaire à une augmentation de la tension secteur de 20 %. Prendre en compte cette hausse de tension lors de l'analyse de l'isolation du moteur pour les applications de freinage.

Motor cable length, m (ft)

	2.50			10.10
	2.00			e30bu010.10
//us)	1.50		```	
dv/dt (kV/μs)	1.00	3		<u>``</u>
	0.50	4		
	0	100 (328)	200 (656)	300 (984)


Motor cable length, m (ft)

1	Câble non blindé sans filtre
2	Câble blindé sans filtre
3	Câble non blindé avec filtre dU/dt
4	Câble blindé avec filtre dU/dt

Illustration 10.21 dU/dt au niveau des bornes du moteur pour les boîtiers E2h/E4h, 525-690 V

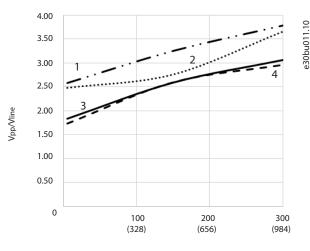


Illustration 10.23 Pics de tension au niveau des bornes du moteur pour les boîtiers E2h/E4h, 525-690 V

1	Câble non blindé avec filtre dU/dt
2	Câble blindé avec filtre dU/dt
3	Câble blindé sans filtre
4	Câble non blindé sans filtre

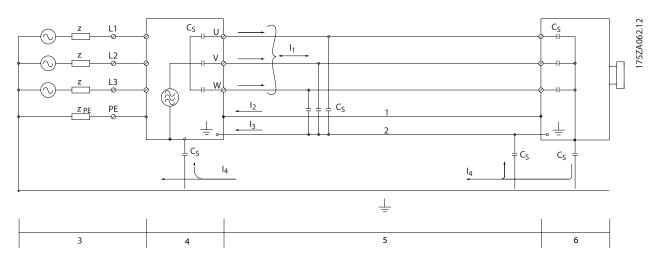
Illustration 10.22 Pics de tension au niveau des bornes du moteur pour les boîtiers E2h/E4h, 525–690 V

Motor cable length, m (ft)

1	Câble non blindé avec filtre dU/dt
2	Câble blindé avec filtre dU/dt
3	Câble blindé sans filtre
4	Câble non blindé sans filtre

Illustration 10.24 Pics de tension au niveau des bornes du moteur pour les boîtiers E2h/E4h, 525-690 V

10.14 Vue d'ensemble de la compatibilité électromagnétique (CEM)


Les dispositifs électriques génèrent des interférences et sont affectés par les interférences d'autres sources générées. La compatibilité électromagnétique (CEM) de ces effets dépend de la puissance et des caractéristiques des harmoniques des dispositifs.

L'interaction incontrôlée entre les dispositifs électriques d'un système peut dégrader la compatibilité et altérer le fonctionnement fiable. Les interférences prennent la forme des éléments suivants :

- décharges électrostatiques ;
- fluctuations de tension rapides ;
- interférences haute fréquence.

Les rafales sont généralement produites à des fréquences comprises entre 150 kHz et 30 MHz. Les interférences en suspension dans l'air émanant du système d'entraînement (30 MHz-1 GHz) sont notamment générées par l'onduleur, le câble du moteur et le moteur.

Les courants de fuite sont imputables aux courants capacitifs affectant le câble du moteur et au rapport dU/dt élevé de la tension du moteur. Voir l'Illustration 10.25. Les câbles de moteur blindés ont une capacitance plus élevée entre les fils de phase et le blindage, et entre le blindage et la terre. Cette capacitance accrue des câbles, associée à une autre capacitance parasite et à l'inductance du moteur, change la signature d'émission électromagnétique produite par l'unité. Ce changement de signature d'émission électromagnétique se produit principalement dans les émissions inférieures à 5 MHz. La majeure partie du courant de fuite (I1) est renvoyée vers l'unité par le PE (I3), ce qui ne laisse qu'un faible champ électromagnétique (I4) émis par le câble blindé du moteur. Le blindage réduit l'interférence rayonnée mais augmente les interférences basse fréquence sur le secteur.

1	Fil de terre	Cs	Chemins de dérivation de capacitance parasite possibles
			(varient selon les installations)
2	Blindage	I ₁	Courant de fuite de mode commun
3	Alimentation secteur CA	l ₂	Câble de moteur blindé
4	Variateur	l ₃	Terre de sécurité (quatrième conducteur dans les câbles de
			moteur)
5	Câble de moteur blindé	I ₄	Courant de mode commun imprévu
6	Moteur	-	-

Illustration 10.25 Modèle électrique montrant les courants de fuite possibles

10

10.14.1 Résultats des essais CEM

Les résultats des essais suivants ont été obtenus avec un variateur (avec des options, le cas échéant), un câble de commande blindé, un boîtier de commande doté d'un potentiomètre, un moteur et un câble de moteur blindé.

Filtre de type		Én	nission transmi	se	Én	nission par rayonne	ement
Normes/	EN 55011	Classe B	Classe A	Classe A	Classe B	Classe A groupe	Classe A groupe 2
Exigences		Habitat,	groupe 1	groupe 2	Habitat,	1	Environnement
		commerce et	Environ-	Environnement	commerce et	Environnement	industriel
		industrie légère	nement	industriel	industrie légère	industriel	
			industriel				
	EN/IEC	Catégorie C1	Catégorie C2	Catégorie C3	Catégorie C1	Catégorie C2	Catégorie C3
	61800-3	Environnement	Environ-	Environnement	Environnement	Environnement	Environnement
		premier, habitat	nement	second,	premier, habitat	premier, habitat	premier, habitat et
		et commerce	premier,	industriel	et commerce	et commerce	commerce
			habitat et				
			commerce				
H2	•	•					
FC 202	110-560 kW	Non	Non	150 m	Non	Non	Oui
	380-480 V			(492 pi)			
	90-800 kW	Non	Non	150 m	Non	Non	Oui
	525-690 V			(492 pi)			
H4	•	•					
FC 202	110-560 kW	Non	150 m	150 m	Non	Oui	Oui
	380-480 V		(492 pi)	(492 pi)			
	90-800 kW	-	-	-	-	-	-
	525-690 V						

Tableau 10.37 Résultats des essais CEM (émission, immunité)

10.14.2 Conditions d'émission

Conformément à la norme produit CEM EN/CEI 61800-3:2004 pour les variateurs à vitesse variable, les conditions CEM dépendent de l'environnement d'installation du variateur. Ces environnements ainsi que les conditions d'alimentation de tension secteur sont définis dans le *Tableau 10.38*.

Le variateur satisfait aux exigences CEM décrites dans la norme CEI/EN 61800-3 (2004)+AM1 (2011), catégorie C3, pour les équipements ayant un appel de courant supérieur à 100 A par phase, installé dans l'environnement second. Les essais de conformité sont réalisés avec un câble de moteur blindé de 150 m (492 pi).

Catégorie	Définition	Émission transmise
(EN 61800-3)		(EN 55011)
C1	Environnement premier (habitat et commerce) avec une tension d'alimentation inférieure à 1 000 V.	Classe B
C2	Environnement premier (habitat et commerce) avec une tension d'alimentation inférieure à 1 000 V, qui n'est ni enfichable ni amovible, et dans lequel il est prévu que le système soit installé ou mis en service par un professionnel.	Classe A groupe 1
C3	Environnement second (industriel) avec une tension d'alimentation inférieure à 1 000 V.	Classe A groupe 2
C4	Environnement second avec les éléments suivants : • tension d'alimentation supérieure ou égale à 1 000 V ; • courant nominal supérieur ou égal à 400 A ; • à utiliser dans des systèmes complexes.	Aucune limite. Un plan CEM doit être effectué.

Tableau 10.38 Conditions d'émission

Lorsque les normes d'émissions génériques sont utilisées, les variateurs doivent être conformes aux limites indiquées dans le *Tableau 10.39*.

Environnement	Norme générique	Condition d'émission par conduction selon les limites indiquées dans la norme EN 55011
Environnement premier	Environnement premier Norme EN/CEI 61000-6-3 concernant les émissions dans les	
(habitat et commerce)	environnements résidentiels, commerciaux et de l'industrie légère.	
Environnement second	Norme EN/CEI 61000-6-4 concernant les émissions dans les	Classe A groupe 1
(environnement industriel)	environnements industriels.	

Tableau 10.39 Limites de la norme générique d'émission

10.14.3 Conditions d'immunité

Les conditions d'immunité des variateurs dépendent de l'environnement d'installation. Les exigences sont plus strictes pour l'environnement industriel que pour les environnements résidentiels et commerciaux. Tous les variateurs Danfoss sont conformes aux exigences des environnements industriels et résidentiels/commerciaux.

Pour documenter l'immunité contre les rafales transitoires, les essais suivants d'immunité ont été réalisés sur un variateur (avec options, le cas échéant), un câble de commande blindé et un boîtier de commande avec potentiomètre, un câble de moteur et un moteur. Les essais ont été effectués selon les normes de base suivantes. Pour plus de détails, voir le *Tableau 10.40*.

- EN 61000-4-2 (CEI 61000-4-2) : décharges électrostatiques (DES). Simulation de l'influence des décharges électrostatiques générées par le corps humain.
- EN 61000-4-3 (CEI 61000-4-3) : champ électromagnétique rayonné à modulation d'amplitude. Simulation de l'influence des radars, matériels de radiodiffusion et appareils de communication mobiles.
- EN 61000-4-4 (CEI 61000-4-4) : rafales. Simulation d'interférences provoquées par la commutation d'un contacteur, d'un relais ou de dispositifs analogues.
- EN 61000-4-5 (CEI 61000-4-5): transitoires. Simulation de transitoires provoquées par la foudre dans des installations à proximité.
- EN 61000-4-6 (CEI 61000-4-6) : mode commun RF. Simulation de l'influence d'équipement de transmission connecté par des câbles de raccordement.

Danfoss

Norme de base	Salves CEI 61000-4-4	Surtension CEI 61000-4-5	Décharge électro- statique CEI 61000-4-2	Champ électromagnétique rayonné CEI 61000-4-3	Tension mode commun RF CEI 61000-4-6
Critère d'acceptation	В	В	В	A	Α
Bus	4 kV CM	2 kV/2 Ω DM 4 kV/12 Ω CM	-	-	10 V _{RMS}
Moteur	4 kV CM	4 kV/2 Ω ¹⁾	_	-	10 V _{RMS}
Frein	4 kV CM	4 kV/2 Ω ¹⁾	_	-	10 V _{RMS}
Répartition de la charge	4 kV CM	4 kV/2 Ω ¹⁾	_	-	10 V _{RMS}
Fils de commande	2 kV CM	2 kV/2 Ω ¹⁾	-	-	10 V _{RMS}
Bus standard	2 kV CM	2 kV/2 Ω ¹⁾	-	-	10 V _{RMS}
Fils du relais	2 kV CM	2 kV/2 Ω ¹⁾	-	-	10 V _{RMS}
Options d'application et bus	2 kV CM	2 kV/2 Ω ¹⁾	-	-	10 V _{RMS}
Câble LCP	2 kV CM	2 kV/2 Ω ¹⁾	-	-	10 V _{RMS}
Alimentation externe 24 V	2 V CM	0,5 kV/2 Ω DM	-	-	10 V _{RMS}
CC		1 kV/12 Ω CM			
Boîtier	-	-	8 kV AD 6 kV CD	10 V/m	_

Tableau 10.40 Schéma d'immunité CEM, plage de tension : 380-480 V, 525-600 V et 525-690 V

AD : rejet d'air ; CD : décharge de contact ; CM : mode commun ; DM : mode différentiel

10.14.4 Compatibilité CEM

AVIS!

RESPONSABILITÉ DE L'OPÉRATEUR

Conformément à la norme EN 61800-3 relative aux systèmes de variateur à vitesse variable, l'opérateur a pour responsabilité de veiller à la conformité CEM. Les fabricants peuvent offrir des solutions d'exploitation conformes à la norme. Les opérateurs sont chargés d'appliquer ces solutions et de payer les coûts associés.

Il existe deux options pour assurer la compatibilité électromagnétique.

- Éliminer ou réduire au minimum les interférences émises à la source.
- Améliorer l'immunité aux interférences des dispositifs affectés par cette réception.

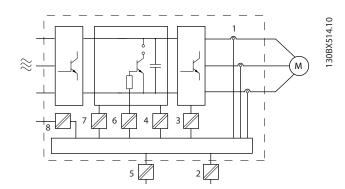
Filtres RFI

L'objectif est d'obtenir des systèmes qui fonctionnent de façon stable sans interférences radioélectriques entre les composants. Pour atteindre un niveau d'immunité élevé, utiliser des variateurs équipés de filtres RFI haute qualité.

AVIS!

INTERFÉRENCES RADIOÉLECTRIQUES

Dans un environnement résidentiel, ce produit peut provoquer des interférences radioélectriques, auquel cas des mesures d'atténuation supplémentaires peuvent être requises.


Conformité en matière d'isolation galvanique et de PELV

Toutes les bornes de relais et de commande des variateurs E1h-E4h sont conformes à la norme PELV (à l'exception des unités au sol sur trépied supérieures à 400 V).

L'isolation galvanique est obtenue en respectant les exigences en matière d'isolation renforcée avec les lignes de fuite et les distances correspondantes. Ces exigences sont décrites dans la norme EN 61800-5-1.

L'isolation électrique est fournie comme indiqué (voir l'Illustration 10.26). Les composants décrits sont conformes aux exigences en matière d'isolation galvanique et PELV.

¹⁾ Injection sur blindage de câble

- 1 Transformateurs de courant
- 2 Isolation galvanique de l'interface de bus standard RS485
- 3 Commande de gâchette des hacheurs de freinage (IGBT)
- 4 Alimentation (SMPS), isolation du signal de V CC incluse, indiguant la tension du circuit intermédiaire
- 5 Isolation galvanique de l'option de secours de 24 V
- 6 Coupleur optoélectronique, module de freinage (en option)
- 7 Courant d'appel interne, RFI et circuits de mesure de la température.
- 8 Relais clients

Illustration 10.26 Isolation galvanique

10.15 Installation selon critères CEM

Pour exécuter une installation conforme aux critères de CEM, se reporter aux instructions fournies dans le *manuel d'utilisation*. Pour voir un exemple d'une installation conforme CEM, voir l'*Illustration 10.27*.

AVIS!

EXTRÉMITÉS BLINDÉES TORSADÉES (QUEUES DE COCHON)

Les extrémités blindées torsadées augmentent l'impédance du blindage à des fréquences élevées, ce qui réduit l'effet du blindage et accroît le courant de fuite. Utiliser des brides pour blindage intégrées afin d'éviter des extrémités blindées torsadées.

- En cas d'utilisation avec des relais, des câbles de commande, une interface signal, un bus de terrain ou un frein, raccorder le blindage au boîtier aux deux extrémités. Si le chemin de mise à la terre présente une impédance élevée, est bruité ou est porteur de courant, rompre le raccordement du blindage à 1 extrémité pour éviter des boucles de courant à la terre.
- Réacheminer les courants vers l'unité à l'aide d'une plaque de montage métallique. Assurer un bon contact électrique à partir de la plaque de

- montage à travers les vis de montage et jusqu'au châssis du variateur.
- Utiliser des câbles blindés pour les câbles de puissance du moteur. Il est aussi possible d'utiliser des câbles de moteur non blindés au sein d'un conduit métallique.

AVIS!

CÂBLES BLINDÉS

Si ni câbles blindés ni conduits métalliques ne sont utilisés, l'unité et l'installation ne satisfont pas aux limites réglementaires relatives aux niveaux d'émission de radiofréquence (RF).

- Veiller à utiliser des câbles de moteur et de résistance de freinage aussi courts que possible pour réduire le niveau d'interférences émises par le système dans son ensemble.
- Éviter de placer les câbles de moteur et de résistance de freinage à côté de câbles sensibles aux perturbations.
- Pour les lignes de communication et de commande, suivre les normes du protocole de communication spécifique. Par exemple, pour la connexion USB, il convient d'utiliser des câbles blindés, mais pour la connexion RS485/Ethernet, des câbles UTP blindés ou non blindés peuvent être utilisés.
- S'assurer que toutes les connexions de borne de commande sont PELV.

AVIS!

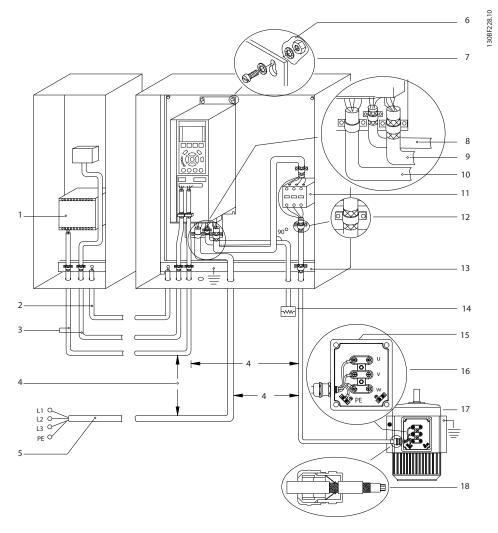
INTERFÉRENCES CEM

Utiliser des câbles blindés pour le câblage du moteur et le câblage de commande. S'assurer de séparer les câbles d'alimentation, du moteur et de commande les uns des autres. Toute mauvaise isolation de ces câbles risque de provoquer une baisse de la performance ou un comportement inattendu. Il faut au moins 200 mm (7,9 po) d'espace entre les câbles d'entrée, de moteur et de commande.

AVIS!

INSTALLATION À HAUTE ALTITUDE

Il existe un risque de surtension. L'isolation entre les composants et les pièces critiques peut s'avérer insuffisante et ne pas satisfaire aux exigences PELV. Réduire le risque de surtension en utilisant des dispositifs de protection externes ou une isolation galvanique.


Pour les installations au-dessus de 2 000 m (6 500 pi) d'altitude, contacter Danfoss concernant la norme PELV.

AVIS!

CONFORMITÉ PELV

Éviter les électrocutions en utilisant une alimentation électrique de type PELV (tension extrêmement basse) et en respectant les réglementations PELV locales et nationales.

1	PLC	10	Câble secteur (non blindé)
2	Câble d'égalisation de 16 mm² (6 AWG) minimum	11	Contacteur de sortie
3	Câbles de commande	12	Isolation de câble dénudée
4	Au moins 200 mm (7,9 po) entre les câbles de commande, de	13	Barre omnibus de mise à la terre commune. Respecter les
	moteur et secteur.		réglementations nationales et locales relatives à la mise à la
			terre d'armoire.
5	Alimentation secteur	14	Résistance de freinage
6	Surface nue (non peinte)	15	Boîtier métallique
7	Rondelles éventail	16	Raccordement au moteur
8	Câble de la résistance de freinage (blindé)	17	Moteur
9	Câble du moteur (blindé)	18	Presse-étoupe CEM

Illustration 10.27 Exemple d'une installation conforme CEM

10.16 Présentation des harmoniques

Les charges non linéaires comme celles présentes avec les variateurs ne peuvent pas absorber le courant uniformément à partir de la ligne électrique. Ce courant non sinusoïdal présente des composants qui sont des multiples de la fréquence fondamentale du courant. Ces composants sont appelés harmoniques. Il est important de contrôler la distorsion harmonique totale de l'alimentation secteur. Même si les harmoniques de courant n'affectent pas directement la consommation d'énergie électrique, elles génèrent de la chaleur dans les câbles et les transformateurs, qui peut affecter d'autres dispositifs sur la même ligne électrique.

10.16.1 Analyse des harmoniques

Étant donné que les harmoniques accroissent les déperditions de chaleur, il est important de penser aux harmoniques lors de la conception des systèmes afin d'éviter toute surcharge du transformateur, des bobines d'induction et du câblage. Si nécessaire, analyser les harmoniques du système afin de déterminer les effets de l'équipement.

Un courant non sinusoïdal peut être transformé par la méthode de Fourier en courants sinusoïdaux de fréquences différentes, c'est-à-dire en harmoniques de courant I_N différentes dont la fréquence fondamentale est égale à 50 ou 60 Hz.

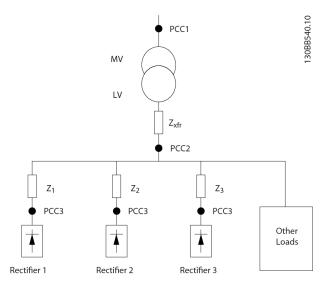
Abréviation	Description
f ₁	Fréquence fondamentale (50 ou 60 Hz)
I ₁	Courant à la fréquence fondamentale
U ₁	Tension à la fréquence fondamentale
In	Courant à la n ^e fréquence harmonique
Un	Tension à la n ^e fréquence harmonique
n	Ordre des harmoniques

Tableau 10.41 Abréviations associées aux harmoniques

	Courant fondamental	Harmo	niques de co	urant (I _n)
	(I ₁)			
Courant	I ₁	I ₅	I ₇	I ₁₁
Fréquence	50 Hz	250 Hz	350 Hz	550 Hz

Tableau 10.42 Courants fondamentaux et harmoniques de courant

Courant	Harmoniques de courant				
	I _{RMS}	I ₁	l ₅	l ₇	I ₁₁₋₄₉
Courant d'entrée	1,0	0,9	0,5	0,2	<0,1


Tableau 10.43 Comparaison entre les harmoniques de courant et le courant d'entrée RMS

La distorsion de la tension d'alimentation secteur dépend de la taille des harmoniques de courant multipliée par l'impédance secteur à la fréquence concernée. La distorsion de tension totale (THDi) est calculée à partir de chacun des harmoniques de courant selon la formule :

$$THDi = \frac{\sqrt{U25 + U27 + ... + U2n}}{U}$$

10.16.2 Effet des harmoniques dans un système de distribution de puissance

Sur l'Illustration 10.28, un transformateur est connecté côté primaire à un point de couplage commun PCC1, sur l'alimentation en moyenne tension. Le transformateur présente une impédance Z_{xfr} et alimente plusieurs charges. Le point de couplage commun où toutes les charges sont connectées est PCC2. Chaque charge se connecte via des câbles présentant une impédance Z_1 , Z_2 , Z_3 .

PCC	Point de couplage commun
MT	Moyenne tension
BT	Basse tension
Z _{xfr}	Impédance du transformateur
Z#	Résistance et inductance de modélisation dans le
	câblage

Illustration 10.28 Petit réseau de distribution

Les harmoniques de courant prélevées par des charges non linéaires provoquent une distorsion de la tension en raison de la baisse de cette dernière sur les impédances du réseau de distribution. Des impédances supérieures entraînent des niveaux plus élevés de distorsion de la tension.

La distorsion de courant est liée aux performances des appareils et à la charge individuelle. La distorsion de tension est quant à elle liée aux performances du système. Il est impossible de déterminer la distorsion de tension sur le PCC en ne connaissant que les performances d'harmoniques de la charge. Pour prévoir la distorsion sur le PCC, la configuration du système de distribution et les impédances associées doivent être identifiées.

Un terme couramment utilisé pour décrire l'impédance d'un réseau est le rapport de court-circuit R_{sce} , défini comme le rapport entre la puissance apparente de court-circuit de l'alimentation au point PCC (S_{sc}) et la puissance apparente nominale de la charge (S_{equ}). $R_{sce} = \frac{S_{sc}}{S_{fau}}$

où
$$S_{sc} = \frac{U^2}{Z_{alimentation}}$$
 et $S_{\acute{e}qu} = U \times I_{\acute{e}qu}$

Effets négatifs des harmoniques

- Les harmoniques de courant contribuent à des pertes système (dans le câblage, le transformateur).
- La distorsion de tension des harmoniques entraîne des perturbations sur les autres charges et augmente leurs pertes.

10.16.3 Normes CEI sur les harmoniques

Dans la plupart des pays européens, la base de l'estimation objective de la qualité du secteur est la loi sur la compatibilité électromagnétique des dispositifs (EMVG). La conformité à ces réglementations garantit que tous les dispositifs et réseaux connectés aux systèmes de distribution électrique répondent à l'usage prévu sans générer de problèmes.

Standard	Définition
EN 61000-2-2, EN	Définissent les limites de tension secteur
61000-2-4, EN	requises par les réseaux d'alimentation
50160	industriels et publics.
EN 61000-3-2,	Régulent la perturbation secteur générée
61000-3-12	par les dispositifs connectés dans des
	produits à courant plus faible.
EN 50178	Surveille les équipements électroniques
	utilisés sur les installations électriques.

Tableau 10.44 Normes de conception EN pour la qualité de la puissance du secteur

Deux normes européennes traitent des harmoniques sur la plage de fréquences 0-9 kHz :

EN 61000-2-2 (Niveaux de compatibilité pour les perturbations conduites à basse fréquence et la transmission des signaux sur les réseaux publics d'alimentation à basse tension)

La norme EN 61000-2-2 définit les exigences des niveaux de compatibilité du point de couplage commun (PCC) des systèmes CA basse tension sur un réseau d'alimentation public. Les limites sont spécifiées uniquement pour la tension des harmoniques et la distorsion harmonique totale de la tension. La norme EN 61000-2-2 ne définit pas les limites pour les harmoniques de courant. Dans les cas où la distorsion harmonique totale THD(V) = 8 %, les limites du PCC sont identiques à celles spécifiées dans la norme EN 61000-2-4 pour la classe 2.

EN 61000-2-4 (Niveaux de compatibilité dans les installations industrielles pour les perturbations conduites à basse fréquence)

La norme EN 61000-2-4 définit les exigences des niveaux de compatibilité sur les réseaux industriels et privés. Cette norme définit également les trois classes suivantes d'environnements électromagnétiques :

- La classe 1 concerne les niveaux de compatibilité inférieurs au réseau d'alimentation public qui affectent les équipements sensibles aux interférences (équipement de laboratoire, quelques appareils d'automatisation et certains dispositifs de protection).
- La classe 2 concerne les niveaux de compatibilité égaux au réseau d'alimentation public. Elle s'applique aux PCC sur le réseau d'alimentation public et aux points de couplage internes (IPC) sur les réseaux d'alimentation industriels ou privés. Tout équipement conçu pour fonctionner sur un réseau d'alimentation public est autorisé dans cette classe.
- La classe 3 concerne les niveaux de compatibilité supérieurs au réseau d'alimentation public. Cette classe s'applique uniquement aux IPC dans les environnements industriels. Utiliser cette classe quand les équipements suivants sont présents :
 - grands variateurs;
 - machines à souder;
 - grands moteurs démarrant fréquemment ;
 - charges variant rapidement.

Généralement, une classe ne peut pas être définie au préalable sans tenir compte de l'équipement prévu et des procédés destinés à être utilisés dans l'environnement. Les variateurs VLT® High-Power Drives respectent les limites de la classe 3 dans des conditions de système d'alimentation typique (R_{SC} > 10 ou v_{k Line} < 10 %).

Ordre des	Classe 1 (V _h %)	Classe 2 (V _h %)	Classe 3 (V _h
harmoniques (h)			%)
5	3	6	8
7	3	5	7
11	3	3,5	5
13	3	3	4,5
17	2	2	4
17 <h 49<="" td="" ≤=""><td>2,27 x (17/h) -</td><td>2,27 x (17/h) -</td><td>4,5 x (17/h) -</td></h>	2,27 x (17/h) -	2,27 x (17/h) -	4,5 x (17/h) -
	0,27	0,27	0,5

Tableau 10.45 Niveaux de compatibilité des harmoniques

	Classe 1	Classe 2	Classe 3
THDv	5%	8%	10%

Tableau 10.46 Niveaux de compatibilité pour la distorsion harmonique totale THDv

10.16.4 Compatibilité harmonique

Les variateurs Danfoss sont conformes aux normes suivantes :

- IEC61000-2-4
- IEC61000-3-4
- G5/4

10.16.5 Atténuation des harmoniques

Dans les situations où une suppression supplémentaire des harmoniques est nécessaire, Danfoss propose le matériel d'atténuation suivant :

- VLT[®] 12-pulse Drives
- VLT[®] Low Harmonic Drives
- VLT[®] Advanced Harmonic Filters
- VLT® Advanced Active Filters

Le choix de la solution appropriée dépend de plusieurs facteurs :

- réseau (distorsion de fond, déséquilibre du réseau, résonance et type d'alimentation (transformateur/générateur));
- application (profil, nombre et taille des charges);
- exigences/réglementations locales/nationales (comme IEEE 519, CEI et G5/4);
- coût total de propriété (coûts initiaux, rendement et maintenance).

10.16.6 Calcul d'harmoniques

Utiliser le logiciel gratuit Danfoss MCT 31 afin de déterminer le degré de pollution en termes de tension sur le réseau, ainsi que les mesures à prendre. Le VLT® Harmonic Calculation MCT 31 est disponible sur www.danfoss.com.

11 Principes de fonctionnement de base d'un variateur

Ce chapitre propose une vue d'ensemble des principaux assemblages et circuits d'un variateur Danfoss. Il vise à décrire les fonctions électriques internes et de traitement des signaux. Une description de la structure interne de contrôle est également incluse.

11.1 Description du fonctionnement

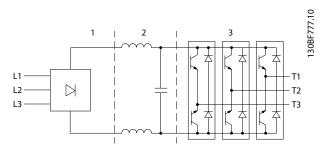
Un variateur est un contrôleur électronique qui fournit une quantité régulée d'alimentation CA à un moteur à induction triphasé. En fournissant tension et fréquence variables au moteur, le variateur fait varier la vitesse du moteur ou maintient une vitesse constante lorsque la charge sur le moteur varie. Le variateur peut aussi arrêter et démarrer un moteur sans contrainte mécanique associée à un démarrage sur le secteur.

Dans sa forme basique, le variateur est composé de quatre sections principales :

Redresseur

Le redresseur se compose de SCR ou diodes qui convertissent une tension CA triphasée en tension CC pulsée.

Circuit intermédiaire (bus CC)


Le circuit intermédiaire se compose d'inducteurs et de batteries de condensateur qui stabilisent la tension CC pulsée.

Onduleur

L'onduleur utilise des hacheurs de freinage (IGBT) pour convertir la tension CC en CA de tension variable et de fréquence variable.

Contrôle

La partie commande se compose d'un logiciel amenant le matériel à produire la tension variable qui commande et régule le moteur CA.

1	Redresseur (SCR/diodes)
2	Circuit intermédiaire (bus CC)
3	Onduleur (hacheurs de freinage (IGBT))

Illustration 11.1 Traitement interne

11.2 Contrôles d'entraînement

Les process suivants servent à contrôler et réguler le moteur :

- référence/entrée utilisateur ;
- traitement du retour ;
- structure de contrôle définie par l'utilisateur :
 - mode boucle ouverte/boucle fermée ;
 - commande de moteur (vitesse, couple ou process);
- algorithmes de contrôle (VVC+, flux sans capteur, flux avec signal de retour du moteur et contrôle de courant interne VVC+).

11.2.1 Références/entrées utilisateur

Le variateur utilise une source d'entrée (appelée aussi référence) pour contrôler et réguler le moteur. Le variateur reçoit cette entrée :

- manuellement via le LCP. Cette méthode est définie comme locale (Hand On);
- à distance via des entrées analogiques/digitales et diverses interfaces série (RS485, USB ou un bus de terrain en option). Cette méthode est définie comme distante (Auto On) et est le réglage d'entrée par défaut.

Référence active

Le terme « référence active » fait référence à la source d'entrée active. La référence active est configurée au paramétre 3-13 Reference Site. Voir l'Illustration 11.2 et le Tableau 11.1.

Pour plus d'informations, se reporter au guide de programmation.

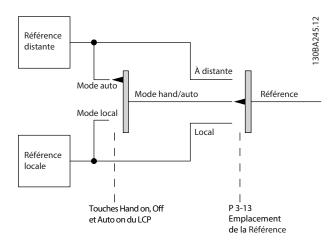


Illustration 11.2 Sélectionner la référence active

Touches du LCP	Paramétre 3-13 Reference	Actif
	Site	Référence
[Hand On]	Mode hand/auto	Local
[Hand On]⇒(Off)	Mode hand/auto	Local
[Auto On]	Mode hand/auto	À distance
[Auto On]⇒(Off)	Mode hand/auto	À distance
Toutes les touches	Local	Local
Toutes les touches	À distance	À distance

Tableau 11.1 Configurations des références locale et distante

11.2.2 Utilisation à distance des références

L'utilisation à distance des références s'applique au fonctionnement en boucle ouverte et en boucle fermée. Voir l'*Illustration 11.3*.

Le variateur permet de programmer jusqu'à 8 références prédéfinies. La référence prédéfinie interne active peut être sélectionnée en externe à l'aide des entrées de commande digitales ou du bus de communication série.

Des consignes externes peuvent également être fournies au variateur, le plus souvent via une entrée de commande analogique. Toutes les sources de référence et la référence du bus sont ajoutées pour produire la consigne externe totale.

La référence active peut être sélectionnée parmi les éléments suivants :

- Consigne externe
- Référence prédéfinie
- Consigne
- Somme de la consigne externe, de la référence prédéfinie et de la consigne

La référence active peut être mise à l'échelle. La référence externe est calculée comme suit :

$$R\'{e}f\'{e}rence = X + X \times \left(\frac{Y}{100}\right)$$

où X est la consigne externe, la référence prédéfinie ou la somme de ces références et Y est le *paramétre 3-14 Preset Relative Reference* en [%].

Lorsque Y, soit le *paramétre 3-14 Preset Relative Reference*, est réglé sur 0 %, la mise à l'échelle n'affecte pas la référence.

11

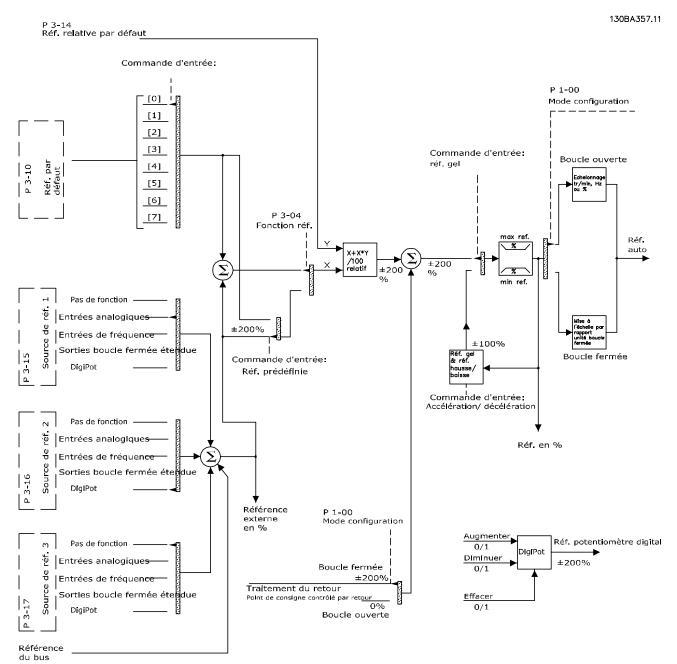


Illustration 11.3 Gestion des références à distance

11.2.3 Traitement du retour

Le traitement du signal de retour peut être configuré pour fonctionner avec des applications nécessitant un contrôle avancé, comme des consignes et des types de signaux de retour multiples. Voir l'*Illustration 11.4*. Trois types de contrôle sont fréquents :

Zone unique (un seul point de consigne)

Ce type de contrôle est une configuration de base du retour. Le point de consigne 1 est ajouté à toute autre référence (le cas échéant) et un signal de retour est sélectionné.

Multizone (un seul point de consigne)

Ce type de commande utilise deux ou trois capteurs de retour mais un seul point de consigne. Le retour peut être ajouté, enlevé ou réparti. De plus, la valeur maximale ou minimale peut être utilisée. Le point de consigne 1 est utilisé exclusivement dans cette configuration.

Multizone (point de consigne/retour)

La paire point de consigne/retour avec la plus grande différence contrôle la vitesse du variateur. La valeur maximum tente de maintenir toutes les zones à leur point de consigne respectif ou en dessous, tandis que la valeur minimum tente de maintenir toutes les zones à leur point de consigne ou au-dessus.

Exemple

Une application à 2 zones et 2 points de consigne. Le point de consigne de la zone 1 est 15 bars et le retour est 5,5 bars. Le point de consigne de la zone 2 est 4,4 bars et le retour est 4,6 bars. Si maximum est sélectionné, la consigne et le signal de retour de la zone 2 sont envoyés au régulateur PID, puisque la différence est la plus petite (le signal de retour est supérieur à la consigne, ce qui donne une différence négative). Si minimum est sélectionné, la consigne et le signal de retour de la zone 1 sont envoyés au régulateur PID, puisque la différence est plus importante (le signal de retour est inférieur à la consigne, ce qui donne une différence positive).

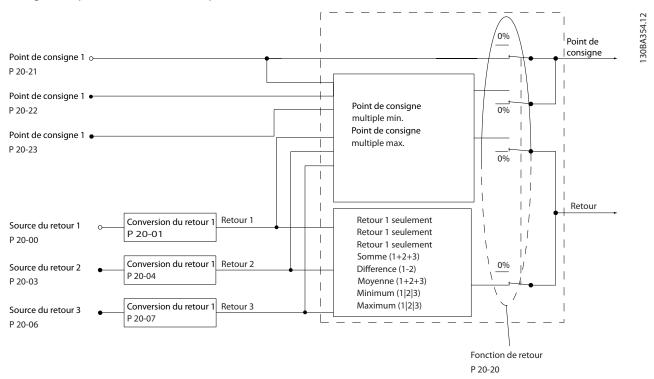


Illustration 11.4 Schéma fonctionnel du traitement du signal de retour

Conversion du signal de retour

Dans certaines applications, la conversion du signal de retour est utile. Par exemple, on peut utiliser un signal de pression pour fournir un signal de retour de débit. Puisque la racine carrée de la pression est proportionnelle au débit, la racine carrée du signal de pression donne une valeur proportionnelle au débit (voir l'Illustration 11.5).

130BF834.10

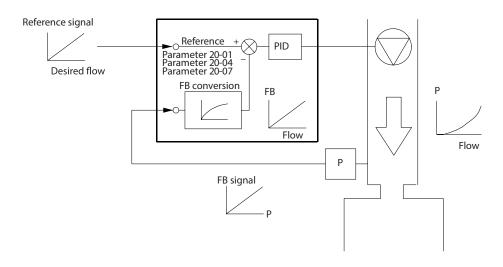


Illustration 11.5 Conversion du signal de retour

11.2.4 Vue d'ensemble de la structure de contrôle

La structure de contrôle est un process logiciel contrôlant le moteur en fonction de références définies par l'utilisateur (p. ex. tr/min) et de l'utilisation ou non d'un signal de retour (boucle fermée/boucle ouverte). L'opérateur définit le contrôle dans le paramétre 1-00 Configuration Mode.

Les structures de contrôle sont comme suit :

Structure de contrôle en boucle ouverte

- Vitesse moteur (tr/min)
- Couple (Nm)

Structure de contrôle en boucle fermée

- Vitesse moteur (tr/min)
- Couple (Nm)
- Process (unités définies par l'utilisateur, p. ex. pied, l/min, psi, %, bar)

11.2.5 Structure de contrôle en boucle ouverte

En mode boucle ouverte, le variateur utilise 1 ou plusieurs références (locales ou distantes) pour contrôler la vitesse ou le couple du moteur. Il existe 2 types de contrôle en boucle ouverte :

- Commande de vitesse. Aucun signal de retour du moteur.
- Commande de couple. Utilisée en mode VVC⁺. Cette fonction est utilisée dans des applications mécaniques robustes mais la précision est limitée. La fonction de couple en boucle ouverte fonctionne uniquement dans un sens de vitesse. Le couple est calculé en fonction de la mesure de courant du variateur. Voir le chapitre 12 Exemples d'applications.

Dans la configuration présentée sur l'*Illustration 11.6*, le variateur fonctionne en mode boucle ouverte. Il reçoit une entrée du LCP (mode Hand-On) ou via un signal distant (mode Auto-On). Le signal (référence de vitesse) est reçu et conditionné par :

- les limites de vitesse minimum et maximum programmées du moteur (en tr/min et Hz) ;
- les temps d'accélération et de décélération ;

• le sens de rotation du moteur.

La référence est ensuite transmise pour contrôler le moteur.

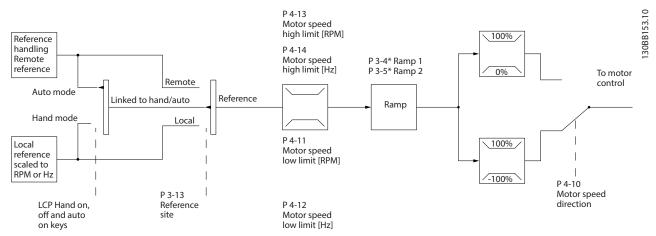


Illustration 11.6 Schéma fonctionnel d'une structure de contrôle en boucle ouverte

11.2.6 Structure de contrôle en boucle fermée

En mode boucle fermée, le variateur utilise 1 ou plusieurs références (locales ou distantes) et des capteurs de signal de retour pour contrôler le moteur. Le variateur reçoit un signal de retour d'un capteur du système. Il compare ensuite ce signal de retour à une valeur de référence du point de consigne et détermine l'écart éventuel entre ces deux signaux. Le variateur ajuste alors la vitesse du moteur pour corriger cet écart.

Prenons par exemple une application de pompe dans laquelle la vitesse de la pompe est régulée de façon à ce que la pression statique dans la conduite soit constante (voir l'*Illustration 11.7*). Le variateur reçoit un signal de retour d'un capteur du système. Il compare ce signal de retour à une valeur de référence du point de consigne et détermine l'écart éventuel entre ces 2 signaux. Il ajuste alors la vitesse du moteur pour compenser cet écart.

La consigne de la pression statique souhaitée est fournie au variateur comme signal de référence. Un capteur mesure la pression statique réelle dans la conduite et la communique au variateur par un signal de retour. Si le signal de retour est supérieur à la référence du point de consigne, le variateur décélère pour réduire la pression. De la même façon, si la pression de la conduite est inférieure à la référence du point de consigne, le variateur accélère pour augmenter la pression de la pompe.

Il existe 3 types de contrôle en boucle fermée :

- Commande de vitesse. Ce type de contrôle nécessite un signal de retour PID de vitesse pour une entrée. Une commande de la vitesse en boucle fermée correctement optimisée est plus précise qu'une commande en boucle ouverte. La commande de vitesse sélectionne l'entrée à utiliser comme signal de retour PID de vitesse au paramétre 7-00 Speed PID Feedback Source.
- Commande de couple. Utilisée en mode flux avec retour codeur, ce contrôle offre de meilleures performances dans les 4 quadrants et à toutes les vitesses du moteur.
 La fonction de commande de couple est utilisée dans les applications où le couple sur l'arbre de sortie du moteur contrôle l'application, telle que contrôle de la tension. La commande de couple est sélectionnée au paramétre 1-00 Configuration Mode, soit en [4] boucle ouverte VVC+ ou en [2] boucle fermée contrôle de flux avec retour vitesse du moteur. Le réglage du couple s'effectue en définissant une référence analogique, digitale ou contrôlée par bus. Le facteur de limite de vitesse max. est défini au paramétre 4-21 Speed Limit Factor Source. En cas d'utilisation de la commande de couple, il est recommandé de réaliser une procédure d'AMA complète car les données correctes du moteur sont cruciales pour une performance optimale.

• Contrôle de process. Utilisé pour contrôler les paramètres de l'application pouvant être mesurés par divers capteurs (pression, température et débit) et affectés par le moteur raccordé par l'intermédiaire d'une pompe ou d'un ventilateur.

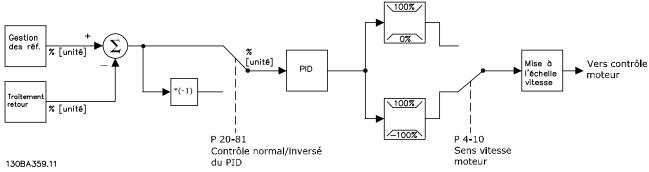


Illustration 11.7 Schéma fonctionnel du contrôleur en boucle fermée

Fonctions programmables

Alors que les valeurs par défaut du variateur en boucle fermée offrent souvent des performances satisfaisantes, le contrôle du système peut souvent être optimisé en ajustant les paramètres PID. Le *réglage automatique* est fourni pour cette optimisation.

- Régulation inverse La vitesse du moteur augmente lorsqu'un signal de retour est élevé.
- Fréquence de démarrage Permet au système d'atteindre rapidement un état d'exploitation avant que le régulateur PID reprenne.
- Filtre passe-bas intégré Réduit le bruit du signal de retour.

11.2.7 Traitement de contrôle

Consulter les *Paramètres actifs/inactifs dans différents modes de contrôle d'entraînement* du *guide de programmation* pour obtenir un aperçu de la configuration de contrôle disponible pour votre application, selon le choix d'un moteur CA ou d'un moteur PM non saillant.

11.2.7.1 Structure de contrôle en mode VVC+

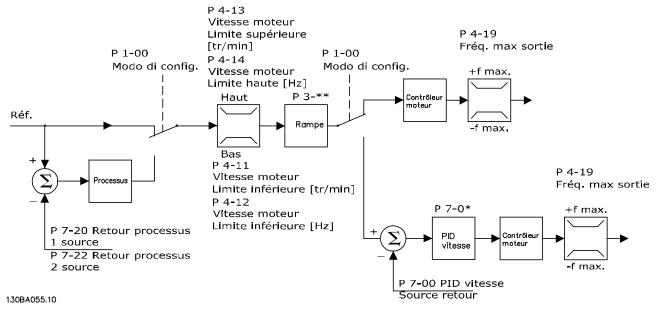


Illustration 11.8 Structure de contrôle en configurations boucles ouverte et fermée VVC+

Dans l'Illustration 11.8, la référence résultant du système de gestion des références est reçue et soumise à la limite de rampe et de vitesse avant d'être transmise au contrôle du moteur. La sortie du contrôle est alors limitée par la limite de fréquence maximale.

Le Paramétre 1-01 Motor Control Principle est réglé sur [1] VVC⁺ et le paramétre 1-00 Configuration Mode sur [0] Boucle ouverte vit. Si le paramétre 1-00 Configuration Mode est réglé sur [1] Boucle fermée vit., la référence résultante passe de la limite de rampe et de vitesse à un régulateur PID de vitesse. Les paramètres du régulateur PID de vitesse se trouvent dans le groupe de paramètres 7-0* PID vit.régul. La référence résultant du régulateur PID de vitesse est transmise au contrôle du moteur soumis à la limite de fréquence.

Sélectionner [3] Process au paramétre 1-00 Configuration Mode afin d'utiliser le régulateur PID de process pour le contrôle en boucle fermée, de la vitesse ou de la pression par exemple, dans l'application contrôlée. Les paramètres du process PID se trouvent dans les groupes de paramètres 7-2* PIDproc/ctrl retour et 7-3* PID proc./Régul.

11.2.7.2 Structure de contrôle dans flux sans capteur

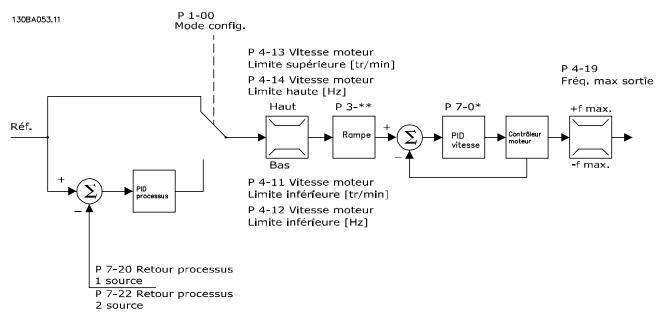


Illustration 11.9 Structure de contrôle en configurations boucles ouverte et fermée flux sans capteur

Dans l'*Illustration 11.9*, la référence résultant du système de gestion des références est soumise aux limites de rampe et de vitesse telles que déterminées par les réglages des paramètres indiqués.

Le Paramétre 1-01 Motor Control Principle est réglé sur [2] Flux ss retour et le paramétre 1-00 Configuration Mode sur [0] Boucle ouverte vit. Un signal de retour de la vitesse estimée est généré à destination du PID de vitesse afin de contrôler la fréquence de sortie. Le PID de vitesse doit être défini avec ses paramètres P, I et D (groupe de paramètres 7-0* PID vit.régul.).

Sélectionner [3] Process au paramétre 1-00 Configuration Mode afin d'utiliser le régulateur PID de process pour le contrôle en boucle fermée de l'application contrôlée. Les paramètres du process PID se trouvent dans les groupes de paramètres 7-2* PID proc./ ctrl retour et 7-3* PID proc./Réqul.

11.2.7.3 Structure de contrôle en flux avec signal de retour du moteur

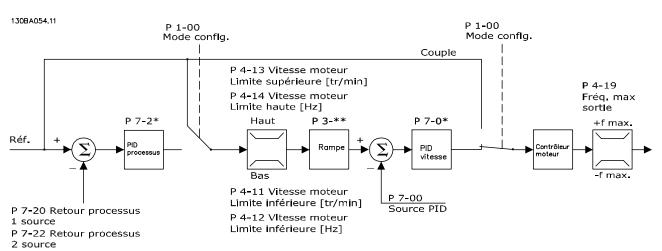


Illustration 11.10 Structure de contrôle dans la configuration Flux avec signal de retour du moteur

Dans l'*Illustration 11.10*, le contrôle du moteur dans cette configuration repose sur un signal de retour d'un codeur ou un résolveur monté directement sur le moteur (défini au *paramétre 1-02 Flux Motor Feedback Source*). La référence résultante peut être utilisée comme entrée du régulateur PID de vitesse, ou directement comme référence de couple.

Le Paramétre 1-01 Motor Control Principle est réglé sur [3] Flux retour codeur et le paramétre 1-00 Configuration Mode sur [1] Boucle fermée vit. Les paramètres du régulateur PID de vitesse se trouvent dans le groupe de paramètres 7-0* PID vit.régul.

La commande de couple ne peut être sélectionnée que dans la configuration *Flux retour codeur (paramétre 1-01 Motor Control Principle)*. Lorsque ce mode est sélectionné, l'unité de référence est le Nm. Il ne nécessite aucun retour concernant le couple réel puisque celui-ci est calculé sur la base de la mesure de courant du variateur.

Le régulateur PID de process peut être utilisé pour le contrôle en boucle fermée de la vitesse ou de la pression dans l'application contrôlée. Les paramètres du process PID se trouvent dans les *groupes de paramètres 7-2* PIDproc/ ctrl retour* et *7-3* PID proc./Régul*.

11.2.7.4 Contrôle de courant interne en mode VVC+

Lorsque le couple du moteur dépasse les limites de couple définies au *paramétre 4-16 Torque Limit Motor Mode*, au *paramétre 4-17 Torque Limit Generator Mode* et au *paramétre 4-18 Current Limit*, le contrôleur de limite de courant intégral est activé.

Si le variateur est en limite de courant en mode moteur ou en mode régénérateur, il tente de descendre le plus rapidement possible en dessous des limites de couple prédéfinies sans perdre le contrôle du moteur.

12 Exemples d'applications

Les exemples de cette partie servent de référence rapide pour les applications courantes.

- Les réglages des paramètres correspondent aux valeurs régionales par défaut sauf indication contraire (sélection au paramétre 0-03 Regional Settings).
- Les paramètres associés aux bornes et leurs réglages sont indiqués à côté des dessins.
- Le réglage des commutateurs des bornes analogiques A53 ou A54 est indiqué lorsque c'est nécessaire.
- Pour STO, un cavalier peut être nécessaire entre la borne 12 et la borne 37 lorsque les valeurs de programmation d'usine par défaut sont utilisées.

12.1 Configurations de câblage pour l'adaptation automatique au moteur (AMA)

			Paramètres	
FC		10	Fonction	Réglage
+24 V	120-	30BB929.10	Paramétre 1-29	[1] AMA
+24 V	130	30BE	Automatic Motor	activée compl.
DIN	180	-	Adaptation	
DIN	190		(AMA)	
сом	200		Paramétre 5-12 T	[2]* Lâchage
DIN	270		erminal 27	
D IN	290		Digital Input	
DIN	320		* = valeur par défaut	
DIN	330		Remarques/com	
DIN	370		régler le groupe	
1			1-2* Données moi	•
+10 V A IN	500		fonction de la pla	ague
A IN	530		signalétique du r	
	54 ¢		signaletique uu i	notcui.
СОМ	550			
A OUT	42 ¢			
СОМ	39 ¢			
	7			

Tableau 12.1 Configuration de câblage pour l'AMA avec borne 27 connectée

			Paramètres						
FC		10	Fonction	Réglage					
+24 V	120	130BB930.10	Paramétre 1-29	[1] AMA					
+24 V	130	30 BB	Automatic Motor	activée compl.					
) IN	180	=	Adaptation						
N	190		(AMA)						
М	200		Paramétre 5-12 T	[0] Inactif					
	270		erminal 27						
N	290		Digital Input						
1	320		* = valeur par dé	rfaut					
	33		Remarques/commentaires :						
	370		régler le groupe de paramètres						
			1-2* Données moi	•					
′	50 φ								
	530		fonction de la pla						
	54		signalétique du r	noteur.					
M	550								
Т	420								
	390								

Tableau 12.2 Configuration de câblage pour l'AMA sans borne 27 connectée

12.2 Configurations de câblage pour la référence de vitesse analogique

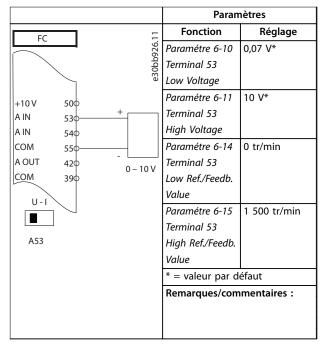


Tableau 12.3 Configuration de câblage pour la référence de vitesse analogique (Tension)

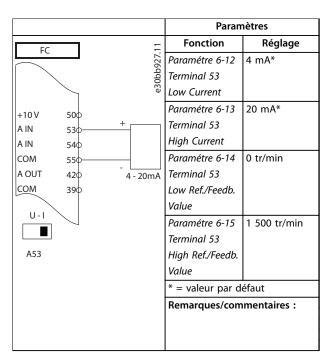


Tableau 12.4 Configuration de câblage pour la référence de vitesse analogique (Courant)

12.3 Configurations de câblage pour marche/arrêt

			Paramètres							
FC		10	Fonction	Réglage						
+24 V	120-	30BB802.10	Paramétre 5-10	[8] Démarrage*						
+24 V	130	30BB	Terminal 18							
DIN	180-	 <u>~</u>	Digital Input							
DIN	190		Paramétre 5-12	[0] Inactif						
сом	200		Terminal 27							
DIN	270		Digital Input							
DIN	290		Paramétre 5-19	[1] Alarme arrêt						
DIN	320		Terminal 37	sécur.						
DIN	330		Digital Input							
D IN	37∳—		* = valeur par d	r défaut						
	500		Remarques/com	mentaires :						
+10 A IN	500		Si le paramétre s	5-12 Terminal 27						
	530		Digital Input est	réalé sur [0]						
A IN	540			I						
СОМ	55¢		Inactif, aucun cavalier n'est							
A OUT	420		requis sur la bor	ne 27.						
СОМ	390									

Tableau 12.5 Configurations de câblage pour ordre de marche/arrêt avec Safe Torque Off

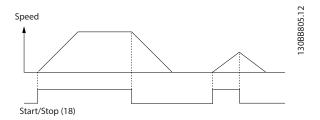


Illustration 12.1 Démarrage/Arrêt avec Safe Torque Off

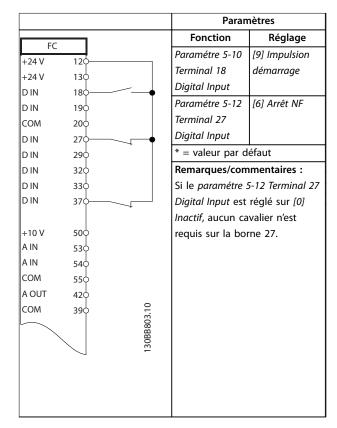


Tableau 12.6 Configurations de câblage pour impulsion de démarrage/arrêt

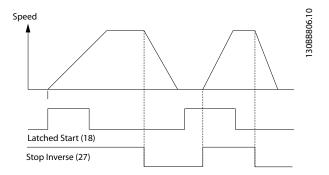


Illustration 12.2 Démarrage par impulsion/arrêt

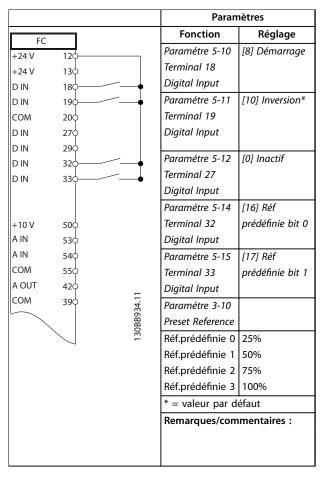


Tableau 12.7 Configurations de câblage pour marche/arrêt avec inversion et 4 vitesses prédéfinies

12.4 Configurations de câblage pour une réinitialisation d'alarme externe

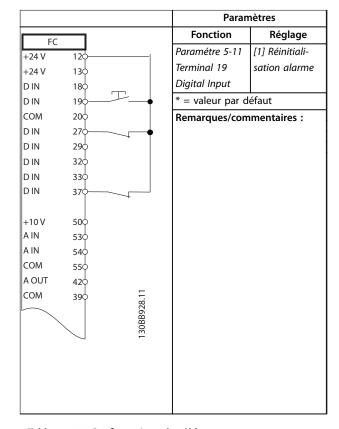


Tableau 12.8 Configurations de câblage pour une réinitialisation d'alarme externe

12.5 Configuration de câblage pour la référence de vitesse à l'aide d'un potentiomètre manuel

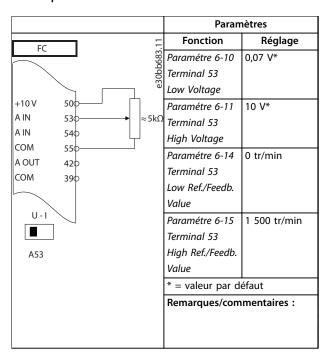


Tableau 12.9 Configuration de câblage pour la référence de vitesse (à l'aide d'un potentiomètre manuel)

12.6 Configuration de câblage pour l'accélération/décélération

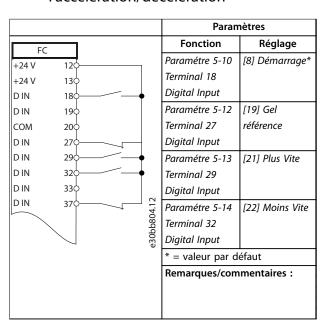


Tableau 12.10 Configuration de câblage pour l'accélération/la décélération

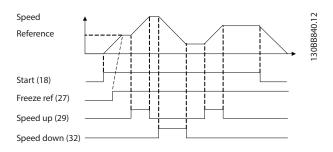


Illustration 12.3 Plus Vite/Moins Vite

12.7 Configuration de câblage pour le raccordement du réseau RS485

			Param	ètres
FC	\neg	9	Fonction	Réglage
+24 V	120	385.	Paramétre 8-30	FC*
+24 V	130	130BB685.10	Protocol	
DIN	180	13(Paramétre 8-31	1*
DIN	190		Address	
СОМ	200		Paramétre 8-32	9600*
DIN	270		Baud Rate	
DIN	290		* = valeur par dé	rfaut
DIN	320			
DIN	330		Remarques/com	
DIN	370		Sélectionner le p	
			l'adresse et la vito	esse de
+10 V	500		transmission dan	s les
A IN	530		paramètres.	
A IN	540			
СОМ	550			
A OUT	420			
СОМ	390			
	010			
≂ -/	020			
	030			
	040			
z /-	050			
	060	RS-485		
	61¢ 68¢—	+		
	690-			
	-	- L		

Tableau 12.11 Configuration de câblage pour le raccordement du réseau RS485

12.8 Configuration de câblage pour une thermistance moteur

AVIS!

Les thermistances doivent présenter une isolation renforcée ou double pour satisfaire aux exigences d'isolation PELV.

			Paran	nètres								
			Fonction	Réglage								
VLT +24 V	120		Paramétre 1-90 [2] Arrêt									
	120		Motor Thermal	thermistance								
+24 V	130		Protection									
DIN	180		Paramétre 1-93	[1] Entrée ANA								
DIN	190		hermistor Source	1								
COM	200											
DIN	270		* = valeur par d	eraut								
DIN	290											
D IN	320		Remarques/com									
D IN	330		Si seul un averti	ssement est								
D IN	370		souhaité, régler	le								
			paramétre 1-90 l	Notor Thermal								
+10 V	500	/	Protection sur [1]	Avertis.								
A IN	530-		Thermist.									
A IN	540											
СОМ	550											
A OUT	420											
СОМ	390											
		2										
U-1		130BB686.12										
		3868										
A53		1306										
,,,,,,		•										

Tableau 12.12 Configuration de câblage pour une thermistance moteur

12.9 Configuration de câblage pour une configuration de relais avec contrôleur logique avancé

		Parame	ètres
FC	10	Fonction	Réglage
+24 V	12¢ 8888 13¢ 87	Paramétre 4-30	[1] Warning
+24 V	130	Motor Feedback	(Avertis-
DIN	180	Loss Function	sement)
DIN	190	Paramétre 4-31	100 RPM
сом	200	Motor Feedback	(100 tr/min)
DIN	270	Speed Error	
DIN	290	Paramétre 4-32	5 s
DIN	320	Motor Feedback	
DIN	330	Loss Timeout	
DIN	370	Paramétre 7-00 S	[2] MCB 102
+10 V	500	peed PID	
AIN	530	Feedback Source	
A IN	540	Paramétre 17-11	1024*
сом	550	Resolution (PPR)	
A OUT	420	Paramétre 13-00	[1] On (Actif)
сом	390	SL Controller	
		Mode	
	010	Paramétre 13-01	[19] Avertis-
≅	020	Start Event	sement
	030	Paramétre 13-02	[44] Touche
	040	Stop Event	Reset
₂ √_	050	Paramétre 13-10	[21] N°
<u>ا ۳</u>	060	Comparator	avertiss.
		Operand	
		Paramétre 13-11	[1]≈ (égal)*
		Comparator	
		Operator	
		Paramétre 13-12	90
		Comparator	
		Value	
		Paramétre 13-51	[22]
		SL Controller	Comparateur 0
		Event	
		Paramétre 13-52	[32] Déf. sort.
		SL Controller	dig. A bas
		Action	
		Paramétre 5-40 F	[80] Sortie
		unction Relay	digitale A
		* = valeur par dé	faut
-		·	

Remarques/commentaires:

Si la limite dans la surveillance du signal de retour est dépassée, l'avertissement 90, Surv. codeur apparaît. Le SLC surveille l'avertissement 90, Surv. codeur et s'il devient VRAI, le relais 1 est déclenché.

L'équipement externe peut nécessiter un entretien. Si l'erreur de signal de retour redescend sous la limite en moins de 5 s, le variateur continue à fonctionner et l'avertissement disparaît. Réinitialiser le relais 1 en appuyant sur [Reset] sur le LCP.

Tableau 12.13 Configuration de câblage pour une configuration de relais avec contrôleur logique avancé

12.10 Configuration de câblage pour une pompe submersible

Le système est constitué d'une pompe submersible contrôlée par un Danfoss VLT® AQUA Drive et un transmetteur de pression. Le transmetteur donne un signal de retour de 4-20 mA au variateur, ce qui maintient une pression constante en contrôlant la vitesse de la pompe. Pour configurer un variateur pour une application de pompe submersible, quelques aspects importants doivent être pris en compte. Sélectionner le variateur selon le courant du moteur.

- Le moteur à stator chemisé est un moteur muni d'une chemise en acier inoxydable entre le rotor et le stator, contenant un entrefer plus grand, avec une résistance magnétique plus élevée que sur un moteur normal. En raison de ce champ plus faible, les moteurs sont conçus avec un courant nominal plus élevé qu'un moteur normal avec une puissance nominale identique.
- La pompe comporte des paliers de butée qui sont endommagés en cas de fonctionnement en dessous de la vitesse minimale, laquelle est normalement de 30 Hz.
- La réactance du moteur est non linéaire sur les moteurs de pompe submersible et l'adaptation automatique au moteur (AMA) n'est pas toujours possible. Généralement, les pompes submersibles fonctionnent avec des câbles de moteur longs qui peuvent éliminer la réactance non linéaire du moteur et permettre au variateur de réaliser une AMA. Si l'AMA échoue, les données moteur peuvent être saisies dans le groupe de paramètres 1-3*. Données av. moteur (voir la fiche technique du moteur). Si l'AMA réussit, le variateur compense la chute de tension dans les câbles de moteur longs. Si les données de moteur avancées sont réglées manuellement, la longueur du câble du moteur doit être prise en compte pour optimiser la performance du système.
- Il est important que le système en fonctionnement entraîne une usure minimale de la pompe et du moteur. Un filtre sinus Danfoss peut réduire la contrainte d'isolation du moteur et augmenter la durée de vie (vérifier l'isolation réelle du moteur et les spécifications dU/dt du variateur). La plupart des fabricants de pompes submersibles requièrent l'utilisation de filtres de sortie.
- La performance CEM peut être difficile à obtenir car le câble de pompe spécial, capable de supporter les conditions d'humidité du puits, est normalement non blindé. Une solution pourrait être d'utiliser un câble blindé au-dessus du puits

et de fixer le blindage au tuyau du puits si celuici est en acier. Un filtre sinus réduit également les interférences électromagnétiques des câbles de moteur non blindés.

Le moteur à stator chemisé spécial est utilisé en raison des conditions d'humidité de l'installation. Configurer le système en fonction du courant de sortie afin de pouvoir faire tourner le moteur à la puissance nominale.

Pour éviter l'endommagement des paliers de butée de la pompe et pour garantir de façon rapide le refroidissement suffisant du moteur, il est important de faire accélérer la pompe de l'arrêt à la vitesse min. le plus vite possible. La plupart des fabricants de pompes submersibles recommandent que la pompe atteigne la vitesse min. (30 Hz) en 2 à 3 secondes maximum. Le VLT® AQUA Drive FC 202 est conçu avec une rampe initiale et finale pour ces applications. Les rampes initiale et finale sont deux rampes individuelles : la rampe initiale, si elle est activée, fait accélérer le moteur de l'arrêt à la vitesse min. et passe automatiquement à la rampe normale lorsque la vitesse min. est atteinte. La rampe finale fait l'inverse de la vitesse min. à l'arrêt dans une situation d'arrêt. Envisager également la gestion avancée de la vitesse minimum de la façon décrite au chapitre 5.9 Vue d'ensemble de la surveillance de la vitesse minimum avancée.

Pour obtenir une protection supplémentaire de la pompe, utiliser la détection de fonctionnement à sec. Pour plus d'informations, se reporter au *guide de programmation*.

Le mode de remplissage des tuyaux peut être activé pour éviter les coups de bélier. Le variateur Danfoss peut remplir des tuyaux verticaux à l'aide du régulateur PID pour faire monter lentement la pression avec un taux spécifié par l'utilisateur (unités/seconde). S'il est activé, le variateur entre en mode de remplissage des tuyaux lorsqu'il atteint la vitesse minimum après le démarrage. La pression augmente lentement jusqu'à atteindre une consigne remplie définie par l'utilisateur, après cela le variateur désactive automatiquement le mode de remplissage des tuyaux et continue en fonctionnement normal en boucle fermée.

Câblage électrique

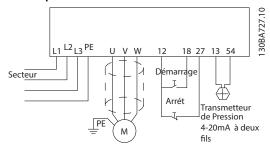


Illustration 12.4 Câblage de l'application de pompe submersible

AVIS!

Régler le format de l'entrée analogique 2 (borne 54) en mA (commutateur 202).

Définition des paramètres

aramètre
aramétre 1-20 Motor Power [kW]/paramétre 1-21 Motor Power HP]
aramétre 1-22 Motor Voltage
aramétre 1-24 Motor Current
aramétre 1-28 Motor Rotation Check
assurer que le paramétre 1-29 Automatic Motor Adaptation
AMA) est réglé sur [2] AMA activée réduite.

Tableau 12.14 Paramètres pertinents de la pompe submersible Application

Paramètre	Réglage					
Paramétre 3-02 Minimum	L'unité de référence minimale					
Reference	correspond à l'unité au					
	paramétre 20-12 Reference/					
	Feedback Unit					
Paramétre 3-03 Maximum	L'unité de référence maximale					
Reference	correspond à l'unité au					
	paramétre 20-12 Reference/					
	Feedback Unit					
Paramétre 3-84 Initial Ramp Time	(2 s)					
Paramétre 3-88 Final Ramp Time	(2 s)					
Paramétre 3-41 Ramp 1 Ramp Up	(8 s selon la taille)					
Time						
Paramétre 3-42 Ramp 1 Ramp	(8 s selon la taille)					
Down Time						
Paramétre 4-11 Motor Speed Low	(30 Hz)					
Limit [RPM]						
Paramétre 4-13 Motor Speed High	(50/60 Hz)					
Limit [RPM]						
Utiliser l'assistant Boucle fermée so	ous Quick Menu⇒Function Set-up					
(menu rapide ⇒ régl. fonctions) pour définir les réglages du signal						

Tableau 12.15 Exemple de réglages de la pompe submersible Application

Paramètre	Réglage
Paramétre 29-00 Pipe Fill Enable	Désactivé
Paramétre 29-04 Pipe Fill Rate	(unités de retour)
Paramétre 29-05 Filled Setpoint	(unités de retour)

Tableau 12.16 Exemple de réglages du mode de remplissage des tuyaux

Performance

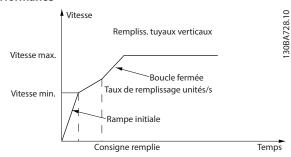


Illustration 12.5 Courbe de performance du mode de remplissage des tuyaux

12

de retour du régulateur PID.

12.11 Configuration de câblage pour un contrôleur de cascade

L'Illustration 12.6 montre un exemple avec le contrôleur de cascade de base intégré, une pompe à vitesse variable (principale) et deux pompes à vitesse fixe, un transmetteur 4-20 mA et un verrouillage de sécurité du système.

FC100/200

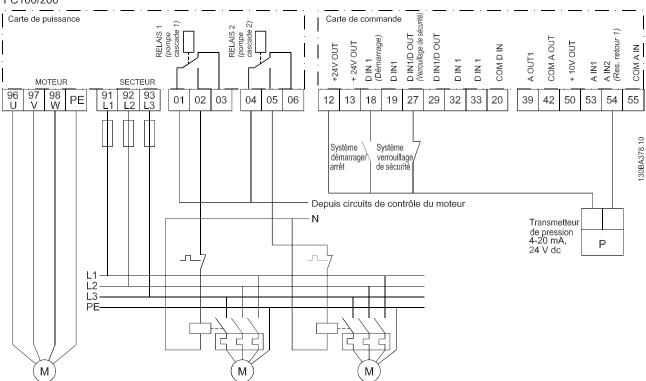


Illustration 12.6 Schéma de câblage du contrôleur de cascade

12.12 Configuration de câblage pour une pompe à vitesse fixe/variable

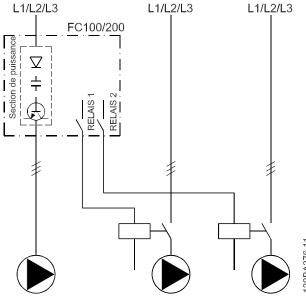


Illustration 12.7 Schéma de câblage de la pompe à vitesse variable/fixe

12.13 Configuration de câblage pour une alternance de pompe principale

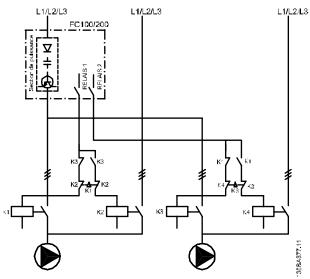


Illustration 12.8 Schéma de câblage d'alternance de la pompe principale.

Chaque pompe doit être connectée à deux contacteurs (K1/K2 et K3/K4) à l'aide d'un verrouillage mécanique. Des relais thermiques ou d'autres dispositifs de protection du moteur contre la surcharge doivent être appliqués conformément à la réglementation locale et/ou aux exigences particulières.

- Les relais 1 (R1) et 2 (R2) sont les relais intégrés au variateur.
- Quand tous les relais sont hors tension, le premier relais intégré actif enclenche le contacteur correspondant à la pompe contrôlée par le relais. Par exemple, le relais 1 démarre le contacteur K1, qui devient la pompe principale.
- K1 bloque K2 via le verrouillage mécanique, évitant que le secteur ne soit connecté à la sortie du variateur (via K1).
- Le contact normalement fermé auxiliaire sur K1 empêche K3 de démarrer.
- Le relais 2 contrôle le contacteur K4 pour le contrôle on/off de la pompe à vitesse fixe.
- Lors de l'alternance, les deux relais sont hors tension et c'est désormais le relais 2 qui est mis sous tension en tant que premier relais.

Pour obtenir une description détaillée de la mise en service d'une pompe mixte et d'applications maître/ esclave, consulter le manuel d'utilisation des options du VLT® Cascade Controller Options MCO 101/102.

13 Comment commander un variateur

13.1 Système de configuration du variateur

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	.10
F	C	-								Т											Х	Х	S	Х	Х	Х	Х	Α		В		С					D		130BC530

Tableau 13.1 Code de type string

Groupe de produits	1–6	
Modèle	7–10	
Tension secteur	11–12	
Boîtier	13–15	
Configuration du matéri	el 16–23	
Filtre RFI	16–17	
Frein	18	
Affichage (LCP)	19	
Tropicalisation PCB	20	
Option secteur	21	
Adaptation A	22	
Adaptation B	23	
Version du logiciel	24–27	
Langue du logiciel	28	
Options A	29–30	
Options B	31–32	
Options C0, MCO	33–34	
Options Co, Mico	33-34	M
Options C1	35	
Logiciel option C	36–37	
Options D	38–39	

Tableau 13.2 Exemple de code de type de commande d'un variateur

Configurer le variateur adapté à l'application en utilisant le système de configuration du variateur sur Internet. Le système de configuration du variateur se trouve sur le site Internet : www.danfoss.com/drives. Le système de configuration crée un code de type string et une référence de vente à huit chiffres à envoyer au service commercial local. On peut aussi établir une liste de projet comportant plusieurs produits et l'envoyer à un représentant Danfoss.

Voici un exemple de code de type string :

FC-202N355T5E20H4BGCXXXSXXXXA0BXCXXXXD0

La signification des caractères de la chaîne est définie dans le *Tableau 13.4*. Dans l'exemple ci-dessus, un PROFIBUS DP-V1 et une option de secours 24 V sont inclus dans le variateur.

Les variateurs sont livrés automatiquement avec un ensemble de langues adapté à la région d'où provient la commande. Quatre ensembles régionaux de langues comprennent les langues suivantes :

Ensemble de langues 1

anglais, allemand, français, danois, néerlandais, espagnol, suédois, italien et finnois.

Ensemble de langues 2

anglais, allemand, chinois, coréen, japonais, thaïlandais, chinois traditionnel et indonésien bahasa.

Ensemble de langues 3

anglais, allemand, slovène, bulgare, serbe, roumain, hongrois, tchèque et russe.

Ensemble de langues 4

anglais, allemand, espagnol, anglais américain, grec, portugais brésilien, turc et polonais.

13.1.1 Code de type de commande pour les boîtiers D1h-D8h

Description	Nº	Choix possible
Groupe de produits	1-6	FC-202
Modèle	7–10	N55 : 55 kW (75 HP)
		N75 : 75 kW (100 HP)
		N90 : 90 kW (125 HP)
		N110: 110 kW (150 HP)
		N132: 132 kW (200 HP)
		N160: 160 kW (250 HP)
		N200 : 200 kW (300 HP)
		N250: 250 kW (350 HP)
		N315 : 315 kW (400-450 HP)
Tension secteur	11-12	T4:380-480 V CA
		T7:525-690 V CA
Boîtier	13-15	E20 : IP20 (châssis – pour une installation dans une protection extérieure)
		E2S : IP20/châssis – châssis D3h
		E21 : IP21 (NEMA 1)
		E2D: IP21/Type 1 Châssis D1h
		E54 : IP54 (NEMA 12)
		E5D : IP54/Type 12 Châssis D1h
		E2M : IP21 (NEMA 1) avec blindage secteur
		E5M : IP54 (NEMA 12) avec blindage secteur
		C20 : IP20 (châssis) + canal de ventilation arrière en acier inoxydable
		C2S : IP20/châssis avec canal de ventilation arrière en acier inoxydable – châssis
		D3h
		H21 : IP21 (NEMA 1) + chauffage
		H54 : IP54 (NEMA 12) + chauffage
Filtre RFI	16-17	H2 : filtre RFI classe A2 (standard)
		H4 : filtre RFI classe A1 ¹⁾
Frein	18	X : pas de hacheur de freinage (IGBT)
		B : hacheur de freinage (IGBT) monté
		R : bornes régénératrices
		S : frein + régénération (IP20 uniquement)
Affichage	19	G : panneau de commande local graphique LCP
		N : panneau de commande local numérique (LCP)
		X : aucun panneau de commande local
Tropicalisation PCB	20	C : PCB tropicalisé
		R : PCB tropicalisé et renforcé
Option secteur	21	X : pas d'option secteur
		3 : sectionneur secteur et fusible
		4 : contacteur secteur + fusibles
		7 : fusible
		A : fusible et répartition de la charge (IP20 uniquement)
		D : bornes de répartition de la charge (IP20 uniquement)
		E : sectionneur secteur + contacteur + fusibles
		J : disjoncteur + fusibles
Adaptation	22	X : entrées de câble standard
Adaptation	23	X : pas d'adaptation
		Q : panneau d'accès au dissipateur de chaleur
Version du logiciel	24-27	Logiciel réel
Langue du logiciel	28	X : ensemble de langues standard

Tableau 13.3 Code de type de commande pour les boîtiers D1h-D8h

¹⁾ Disponible pour tous les châssis D.

13.1.2 Code de type de commande pour les boîtiers E1h-E4h

Description	Position	Option possible
Groupe de produits	1–6	FC-202
Modèle	7–10	N355 : 355 kW (500 HP)
		N400 : 400 kW (550-600 HP)
		N450 : 450 kW (450-600 HP)
		N500 : 500 kW (500-650 HP)
		N560 : 560 kW (600-750hp)
		N630 : 630 kW (650 HP)
		N710 : 710 kW (750 HP)
		N800 : 800 kW (950 HP)
Tension secteur	11–12	T4 : 380-480 V CA
		T7 : 525-690 V CA
Boîtier	13–15	E00 : IP00/Châssis (boîtiers E3h/E4h avec régén. sup./répartition charge uniquement)
		E20 : IP20/Châssis
		E21 : IP21/Type 1
		E54 : IP54/Type 12
		E2M : IP21/Type 1 + blindage secteur
		E5M : IP54/Type 12 + blindage secteur
		H21 : IP21/Type 1 + appareil de chauffage
		H54 : IP54/Type 12 + appareil de chauffage
		C20 : IP20/Type 1 + canal de ventilation arrière en acier inoxydable
		C21 : IP21/Type 1 + canal de ventilation arrière en acier inoxydable
		C54 : IP54/Type 12 + canal de ventilation arrière en acier inoxydable
		C2M : IP21/Type 1 + blindage secteur + canal de ventilation arrière en acier inoxydable
		C5M : IP54/Type 12 + blindage secteur + canal de ventilation arrière en acier inoxydable
		C2H : IP21/Type 1 + appareil de chauffage + canal de ventilation arrière en acier inoxydable
		C5H : IP54/Type 12 + appareil de chauffage + canal de ventilation arrière en acier
		inoxydable
Filtre RFI	16–17	H2 : filtre RFI, classe A2 (C3)
Title III I	10-17	H4 : filtre RFI, classe A1 (C2)
Frein	18	X : aucun hacheur de freinage
T Telli	10	B : hacheur de freinage monté
		T : Safe Torque Off (STO)
		U: hacheur de freinage + Safe Torque Off
		R : bornes régénératrices
		S : hacheur de freinage + bornes régén. (boîtiers E3h/E4h uniquement)
Affichage	19	X : sans LCP
Amenage	19	G : LCP graphique (LCP-102)
		J : sans LCP + USB accessible en face avant de la porte
		·
Tueniesliesties DCD	20	L : LCP graphique + USB accessible en face avant de la porte
Tropicalisation PCB	20	C : PCB tropicalisé
0.11	24	R : PCB tropicalisé 3C3 + renforcé
Option secteur	21	X : pas d'option secteur
		3 : sectionneur secteur + fusibles
		7 : fusibles
		A : fusibles + bornes de répartition de la charge (boîtiers E3h/E4h uniquement)
		D : bornes de répartition de la charge (boîtiers E3h/E4h uniquement)
Matériel, adaptation A	22	X : pas d'option
Matériel, adaptation B	23	X : pas d'option
		Q : accès au dissipateur de chaleur
Version du logiciel	24–28	SXXX : dernière version – logiciel standard
		S067 : logiciel de contrôle de mouvement intégré

Description	Position	Option possible
Langue du logiciel	28	X : ensemble de langues standard

Tableau 13.4 Code de type de commande pour les boîtiers E1h-E4h

13.1.3 Options de commande pour tous les boîtiers VLT® AQUA Drive FC 202

Description	N°	Option possible
Options A	29–30	AX : pas d'option A
		A0 : VLT® PROFIBUS DP V1 MCA 101
		A4 : VLT® DeviceNet MCA 104
		AL: VLT® PROFINET MCA 120
		AN: VLT® EtherNet/IP MCA 121
		AQ : VLT® POWERLINK MCA 122
Options B	31–32	BX : pas d'option
		B0 : VLT® Analog I/O Option MCB 109
		B2: VLT® PTC Thermistor Card MCB 112
		B4: VLT® Sensor Input Option MCB 114
		BK : VLT® General Purpose I/O Module MCB 101
		BP : VLT® Relay Card MCB 105
		BR: VLT® Encoder Input MCB 102
		BY: VLT® Extended Cascade Controller MCO 101
Options C0/E0	33–34	CX : pas d'option
Options C1/A/B dans l'adaptateur de l'option C	35	X : pas d'option
		R: VLT® Extended Relay Card MCB 113
Logiciel option C/options E1	36–37	XX : pas d'option logicielle
Options D	38–39	DX : pas d'option
		D0 : VLT [®] 24 V DC Supply MCB 107

Tableau 13.5 Code de type de commande pour les options du FC 202

13.2 Références des options et accessoires

13.2.1 Numéros de commande pour les options A : bus de terrain

Description	Référence	
	Non tropicalisé Tropicalisé	
VLT® Profibus DP MCA 101	130B1100	130B1200
VLT® DeviceNet MCA 104	130B1102	130B1202
VLT® PROFINET MCA 120	130B1135	130B1235
VLT® EtherNet/IP MCA 121	130B1119	130B1219
VLT® Modbus TCP MCA 122	130B1196	130B1296

Tableau 13.6 Numéros de commande pour les options A

Pour des informations concernant la compatibilité des options de bus de terrain et d'application avec des versions logicielles moins récentes, contacter le distributeur Danfoss.

13.2.2 Numéros de commande pour les options B : extensions fonctionnelles

Description	Référence		
	Non tropicalisé	Tropicalisé	
VLT® General Purpose I/O MCB 101	130B1125	130B1212	
VLT® Relay Card MCB 105	130B1110	130B1210	
VLT® Analog I/O MCB 109	130B1120	130B1220	
VLT® PTC Thermistor Card MCB 112	-	130B1137	
VLT® Sensor Input MCB 114	130B1172	130B1272	
VLT® Extended Cascade Controller MCO 101	130B1108	130B1208	

Tableau 13.7 Numéros de commande pour les options B

13.2.3 Numéros de commande pour les options C : contrôle de mouvement et carte relais

Description	Référence	
	Non tropicalisé	Tropicalisé
VLT® Extended Relay Card MCB 113	130B1164	130B1264
VLT® Advanced Cascade Controller MCO 102	130B1154	130B1254

Tableau 13.8 Numéros de commande pour les options C

13.2.4 Numéros de commande des options D : alimentation de secours 24 V

Description	Référence	
	Non tropicalisé Tropicalisé	
VLT® 24 V DC Supply MCB 107	130B1108	130B1208

Tableau 13.9 Numéros de commande des options D

13.2.5 Références des options logicielles

Description	Référence
VLT® Logiciel de programmation MCT 10 – 1 utilisateur.	130B1000
VLT® Logiciel de programmation MCT 10 – 5 utilisateurs.	130B1001
VLT® Logiciel de programmation MCT 10 – 10 utilisateurs.	130B1002
VLT® Logiciel de programmation MCT 10 – 25 utilisateurs.	130B1003
VLT® Logiciel de programmation MCT 10 – 50 utilisateurs.	130B1004
VLT® Logiciel de programmation MCT 10 – 100 utilisateurs.	130B1005
VLT® Logiciel de programmation MCT 10 – Nombre illimité d'utilisateurs.	130B1006

Tableau 13.10 Références des options logicielles

13.2.6 Références pour les kits D1h-D8h

Туре	Description	Référence
Matériel divers		
Blindage intempéries NEMA 3R,	Blindage conçu pour protéger le variateur du rayonnement direct, de	176F6302
D1h	la neige et des débris. Les variateurs utilisant ce blindage doivent être	
	commandés à l'usine comme « prêts pour NEMA 3R », que vous	
	trouverez dans le code de type dans l'option de boîtier E5S.	

Туре	Description	Référence
Blindage intempéries NEMA 3R,	Blindage conçu pour protéger le variateur du rayonnement direct, de	176F6303
D2h	la neige et des débris. Les variateurs utilisant ce blindage doivent être	
	commandés à l'usine comme « prêts pour NEMA 3R », que vous	
	trouverez dans le code de type dans l'option de boîtier E5S.	
NEMA 3R pour kit de refroidis-	Assure un niveau de protection nominal NEMA 3R ou NEMA 4. Ces	176F3521
sement entrée arrière/sortie	boîtiers ont été conçus pour un usage extérieur afin d'offrir une	
arrière dans un boîtier soudé,	protection en cas de mauvais temps.	
D3h		
NEMA 3R pour kit de refroidis-	Assure un niveau de protection nominal NEMA 3R ou NEMA 4. Ces	176F3633
sement entrée arrière/sortie	boîtiers ont été conçus pour un usage extérieur afin d'offrir une	
arrière dans un boîtier Rittal,	protection en cas de mauvais temps.	
D3h		
NEMA 3R pour kit de refroidis-	Assure un niveau de protection nominal NEMA 3R ou NEMA 4. Ces	176F3526
sement entrée arrière/sortie	boîtiers ont été conçus pour un usage extérieur afin d'offrir une	
arrière dans un boîtier soudé,	protection en cas de mauvais temps.	
D4h		
NEMA 3R pour kit de refroidis-	Assure un niveau de protection nominal NEMA 3R ou NEMA 4. Ces	176F3634
sement entrée arrière/sortie	boîtiers ont été conçus pour un usage extérieur afin d'offrir une	
arrière dans un boîtier Rittal,	protection en cas de mauvais temps.	
D3h		
Plaque d'adaptation, D1h/D3h	Plaque utilisée pour remplacer un boîtier D1/D3 par le boîtier	176F3409
	D1h/D3h en utilisant la même configuration de montage.	
Plaque d'adaptation, D2h/D4h	Plaque utilisée pour remplacer un boîtier D2/D4 par le boîtier	176F3410
	D2h/D4h en utilisant la même configuration de montage.	
Kit de gaine de canal de	Kit de gaine convertissant le boîtier en ventilation avec entrée basse/	176F3627
ventilation arrière, D3h	sortie haute ou ventilation haute uniquement. Taille de boîtier : 1 800	
,	mm (70,9 po).	
Kit de gaine de canal de	Kit de gaine convertissant le boîtier en ventilation avec entrée basse/	176F3629
ventilation arrière, D3h	sortie haute ou ventilation haute uniquement. Taille de boîtier : 2 000	
, , , , , , , , , , , , , , , , , , ,	mm (78,7 po).	
Kit de gaine de canal de	Kit de gaine convertissant le boîtier en ventilation avec entrée basse/	176F3628
ventilation arrière, D4h	sortie haute ou ventilation haute uniquement. Taille de boîtier : 1 800	
,	mm (70,9 po).	
Kit de gaine de canal de	Kit de gaine convertissant le boîtier en ventilation avec entrée basse/	176F3630
ventilation arrière, D4h	sortie haute ou ventilation haute uniquement. Taille de boîtier : 2 000	
	mm (78,7 po).	
Socle, D1h	Socle haut de 400 mm (15,7 po) permettant au variateur d'être monté	176F3631
33.1.2	au sol. La façade du socle a des ouvertures pour faciliter l'entrée d'air	., 0. 505 .
	pour refroidir les composants de puissance.	
Socle, D2h	Socle haut de 400 mm (15,7 po) permettant au variateur d'être monté	176F3632
30cic, <i>D</i> 211	au sol. La façade du socle a des ouvertures pour faciliter l'entrée d'air	17013032
	pour refroidir les composants de puissance.	
Socle, D5h/D6h	Socle haut de 200 mm (7,9 po) permettant au variateur d'être monté	176F3452
ocie, Doll/Doll	au sol. La façade du socle a des ouvertures pour faciliter l'entrée d'air	1701 3432
	pour refroidir les composants de puissance.	
Sacla D7h/D9h		17652520
Socle, D7h/D8h	Socie haut de 200 mm (7,9 po) permettant au variateur d'être monté	176F3539
	au sol. La façade du socle a des ouvertures pour faciliter l'entrée d'air	
Francis and determined to All I	pour refroidir les composants de puissance.	17652504
Entrée supérieure des câbles de	·	176F3594
bus de terrain, D1h–D8h	variateur. Le kit est IP20/châssis une fois installé, mais un autre	
	connecteur homologue peut être utilisé pour augmenter la protection	
	nominale.	
USB dans la porte, D1h–D8h	Kit de rallonge USB permettant d'accéder aux contrôles d'entraî-	Contacter l'usine
(IP20/châssis)	nement via un ordinateur portable sans ouvrir le variateur.	

Туре	Description	Référence	
USB dans la porte, D1h–D8h	Kit de rallonge USB permettant d'accéder aux contrôles d'entraî-	Contacter l'usine	
(IP21/Type 1 et IP54/Type 12)	nement via un ordinateur portable sans ouvrir le variateur.		
Option de plaque d'entrée,	Permet d'ajouter des options de fusibles, sectionneurs/fusibles, RFI,	Contacter l'usine	
D1h-D8h	FRI/fusibles et RFI/sectionneur/fusibles.		
Blocs de raccordement	Blocs de raccordement à vis pour remplacer les bornes à ressort.	130B	1116
	(1 sac de connecteurs à 10 broches, 1 sac de connecteurs à 6 broches		
	et 1 sac de connecteurs à 3 broches)		
Kits de refroidissement par le ca	anal de ventilation arrière	Standard	Acier inoxydable
Entrée arrière/sortie arrière	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3519	176F3520
(boîtiers non Rittal), D3h	du variateur. N'inclut pas de plaques de montage dans le boîtier. Ce		
	kit est seulement utilisé pour le boîtier D3h.		
Entrée arrière/sortie arrière	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3524	176F3525
(boîtiers non Rittal), D4h	du variateur. N'inclut pas de plaques de montage dans le boîtier. Ce		
	kit est seulement utilisé pour le boîtier D4h.		
Entrée basse/sortie arrière,	Permet de faire entrer l'air de refroidissement dans la position basse	176F3522	176F3523
D1h/D3h	et de le faire sortir par l'arrière du variateur. Ce kit est seulement		
	utilisé pour les boîtiers D1h/D3h.		
Entrée basse/sortie arrière,	Permet de faire entrer l'air de refroidissement dans la position basse	176F3527	176F3528
D2h/D4h	et de le faire sortir par l'arrière du variateur. Ce kit est seulement		
	utilisé pour les boîtiers D2h/D4h.		
Entrée arrière/sortie arrière, D1h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3648	176F3656
	du variateur. Ce kit est seulement utilisé pour le boîtier D1h.		
Entrée arrière/sortie arrière, D2h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3649	176F3657
	du variateur. Ce kit est seulement utilisé pour le boîtier D2h.		
Entrée arrière/sortie arrière, D3h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3625	176F3654
	du variateur. Ce kit est seulement utilisé pour le boîtier D3h.		
Entrée arrière/sortie arrière, D4h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3626	176F3655
	du variateur. Ce kit est seulement utilisé pour le boîtier D4h.		
Entrée arrière/sortie arrière,	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3530	-
D5h/D6h	du variateur. Ce kit est seulement utilisé pour les boîtiers D5h/D6h.		
Entrée arrière/sortie arrière,	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F3531	-
D7h/D8h	du variateur. Ce kit est seulement utilisé pour les boîtiers D7h/D8h.		
LCP			•
LCP 101	Panneau de commande local numérique (NLCP).	130B	1124
LCP 102	Panneau de commande local graphique (GLCP).	130B1107	
Câble LCP	Câble LCP distinct, 3 m (9 pi).	175Z0929	
Kit LCP, IP21	Kit de montage du panneau comprenant LCP graphique, fixations,	130B1113	
	câble de 3 m (9 pi) et joint.		
Kit LCP, IP21	Kit de montage du panneau comprenant LCP numérique, fixations et	130B1114	
	joint.		
Kit LCP, IP21	Kit de montage du panneau pour tous les LCP, comprenant fixations,	130B	1117
	câble de 3 m (9 pi) et joint.		
Options externes			
Ethernet/IP	Ethernet maître.	175N	2584

Tableau 13.11 Kits disponibles pour les boîtiers D1h-D8h

13.2.7 Références pour les kits E1h-E4h

Туре	Description	Référ	ence
Matériel divers			
Entrée supérieure Profibus, E1h-	Arrivée par le haut pour protection nominale IP54.	176F	1742
E4h			
USB dans la porte, E1h–E4h	Kit de rallonge USB permettant d'accéder aux contrôles d'entraî-	130B1156	
	nement via un ordinateur portable sans ouvrir le variateur.		
Barre de mise à la terre	Points de mise à la terre supplémentaires pour les variateurs E1h et	176F6609	
	E2h.		
Blindage secteur, E1h	Plaque de protection contre les pièces nues sous tension pour	176F	5619
	prévenir tout contact accidentel.		
Blindage secteur, E2h	Plaque de protection contre les pièces nues sous tension pour	176F	6620
	prévenir tout contact accidentel.		
Blocs de raccordement	Blocs de raccordement à vis pour remplacer les bornes à ressort.	130B	1116
	(1 sac de connecteurs à 10 broches, 1 sac de connecteurs à 6 broches		
	et 1 sac de connecteurs à 3 broches)		
Kits de refroidissement par le		Standard	Acier
canal de ventilation arrière			inoxydable
Entrée basse/sortie haute, E3h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6606	-
	et de le faire sortir par la position haute du variateur. Kit seulement		
	utilisé pour le boîtier E3h avec le socle de 600 mm (21,6 po).		
Entrée basse/sortie haute, E3h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6607	-
	et de le faire sortir par la position haute du variateur. Kit seulement		
	utilisé pour le boîtier E3h avec socle de 800 mm (31,5 po).		
Entrée basse/sortie haute, E4h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6608	-
	et de le faire sortir par la position haute du variateur. Kit seulement		
	utilisé pour le boîtier E4h avec le socle de 800 mm (31,5 po).		
Entrée arrière/sortie arrière, E1h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F6617	-
	du variateur. Kit seulement utilisé pour le boîtier E1h.		
Entrée arrière/sortie arrière, E2h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F6618	-
	du variateur. Kit seulement utilisé pour le boîtier E2h.		
Entrée arrière/sortie arrière, E3h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F6610	-
	du variateur. Kit seulement utilisé pour le boîtier E3h.		
Entrée arrière/sortie arrière, E4h	Permet de faire entrer et sortir l'air de refroidissement depuis l'arrière	176F6611	-
	du variateur. Kit seulement utilisé pour le boîtier E4h.		
Entrée basse/sortie arrière, E3h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6612	-
	et de le faire sortir par l'arrière du variateur. Kit seulement utilisé pour		
	le boîtier E3h avec le socle de 600 mm (21,6 po).		
Entrée basse/sortie arrière, E3h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6613	-
	et de le faire sortir par l'arrière du variateur. Kit seulement utilisé pour		
	le boîtier E3h avec le socle de 800 mm (31,5 po).		
Entrée basse/sortie arrière, E4h	Permet de faire entrer l'air de refroidissement dans la position basse	176F6614	-
	et de le faire sortir par l'arrière du variateur. Kit seulement utilisé pour		
	le boîtier E4h avec socle de 800 mm (31,5 po).		
Entrée arrière/sortie haute, E3h	Permet de faire entrer l'air de refroidissement par l'arrière et de le	176F6615	-
	faire sortir par la position haute du variateur. Kit seulement utilisé		
	pour le boîtier E3h.		
Entrée arrière/sortie haute, E4h	Permet de faire entrer l'air de refroidissement par l'arrière et de le	176F6616	-
	faire sortir par la position haute du variateur. Kit seulement utilisé		
	pour le boîtier E4h.		
LCP			
LCP 101	Panneau de commande local numérique (NLCP).	130B	1124
LCP 102	Panneau de commande local graphique (GLCP).	130B1107	
Câble LCP	Câble LCP distinct, 3 m (9 pi).	175Z	0929

Comment commander un variat...

Туре	Description	Référence
Kit LCP, IP21	Kit de montage du panneau comprenant LCP graphique, fixations,	130B1113
	câble de 3 m (9 pi) et joint.	
Kit LCP, IP21	Kit de montage du panneau comprenant LCP numérique, fixations et	130B1114
	joint.	
Kit LCP, IP21	Kit de montage du panneau pour tous les LCP, comprenant fixations,	130B1117
	câble de 3 m (9 pi) et joint.	
Options externes		
Ethernet/IP	Ethernet maître.	175N2584

Tableau 13.12 Kits disponibles pour les boîtiers E1h-E4h

13.3 Références pour les filtres et résistances de freinage

Consulter les manuels de configuration suivants pour connaître les spécifications de dimensionnement et les références pour les filtres et résistances de freinage :

- Manuel de configuration du VLT® Brake Resistor MCE 101.
- Manuel de configuration des VLT® Advanced Harmonic Filters AHF 005/AHF 010.
- Manuel de configuration des filtres de sortie.

13.4 Pièces de rechange

Consulter l'atelier VLT® ou le système de configuration du variateur (www.danfoss.com/drives) pour connaître les pièces de rechange disponibles pour votre application.

14 Annexe

14.1 Abréviations et symboles

_	
60° AVM	Modulation vectorielle asynchrone 60°
Α	Ampère
CA	Courant alternatif
AD	Rejet d'air
AEO	Optimisation automatique de l'énergie
Al	Entrée analogique
AIC	Courant d'interruption en ampères
AMA	Adaptation automatique au moteur
AWG	American Wire Gauge (calibre américain des fils)
°C	Degrés Celsius
СВ	Disjoncteur
CD	Décharge constante
CDM	Module d'entraînement complet : le variateur, la
	section d'alimentation et les auxiliaires
CE	Conformité européenne (normes de sécurité
	européennes)
CM	Mode commun
СТ	Couple constant
СС	Courant continu
DI	Entrée dig.
DM	Mode différentiel
D-TYPE	Dépend du variateur
CEM	Compatibilité électromagnétique
FEM	Force électromotrice
ETR	Relais thermique électronique
°F	Degrés Fahrenheit
f _{JOG}	Fréquence du moteur lorsque la fonction jogging
1,00	est activée
f _M	Fréquence du moteur
f _{MAX}	Fréquence de sortie maximale que le variateur
-140.00	applique à sa sortie
f _{MIN}	Fréquence minimale du moteur du variateur
f _{M.N}	Fréquence nominale du moteur
FC	Variateur de fréquence
FSP	Pompe à vitesse fixe
HIPERFACE®	HIPERFACE® est une marque déposée de
HIPERFACE	Stegmann
НО	Surcharge élevée
HP	-
HTL	Cheval-puissance Impulsions du codeur HTL (10-30 V) – Haute
I I I L	tension logique de transistor
Hz	Hertz
	Courant de sortie nominal onduleur
linv	
ILIM	Limite de courant
I _{M,N}	Courant do action moteur
I _{VLT,MAX}	Courant de sortie maximal
I _{VLT,N}	Courant nominal de sortie fourni par le variateur
kHz	Kilohertz
LCP	Panneau de commande local

Lsb	Bit de poids faible
m	Mètre
mA	Milliampère
MCM	Mille Circular Mil
MCT	Outil de contrôle du mouvement
mH	Inductance en millihenry
mm	Millimètre
ms	Milliseconde
Msb	Bit de poids fort
ηνιτ	Rendement du variateur défini comme le rapport
	entre la puissance dégagée et la puissance
	absorbée
nF	Capacitance en nanofarad
NLCP	Panneau de commande local numérique
Nm	Newton-mètre
NO	Surcharge normale
ns	Vitesse moteur synchrone
Paramètres	Les modifications apportées aux paramètres en
en ligne/hors	ligne sont activées immédiatement après modifi-
ligne	cation de la valeur des données
P _{fr,cont} .	Puissance nominale de la résistance de freinage
	(puissance moyenne pendant le freinage continu)
PCB	Carte à circuits imprimés
PCD	Données de process
PDS	Entraînement électrique de puissance : CDM et un
	moteur
PELV	Protective extra low voltage (très basse tension de
	protection)
Pm	Puissance de sortie nominale du variateur en
	surcharge élevée
P _{M,N}	Puissance nominale du moteur
Moteur PM	Moteur à aimant permanent
Process PID	Régulateur proportionnel intégral dérivé qui
	maintient la vitesse, la pression, la température,
	etc.
R _{fr,nom}	Valeur de résistance nominale qui garantit une
	puissance de freinage sur l'arbre moteur de
	150 %/160 % pendant une minute
RCD	Relais de protection différentielle
Régén.	Bornes régénératrices
R _{min}	Valeur de résistance de freinage minimale
	autorisée par le variateur
RMS	Valeur efficace
tr/min	Tours par minute
R _{rec}	Résistance de freinage recommandée des
	résistances de freinage Danfoss
S	Seconde
SCCR	Courant nominal de court-circuit
SFAVM	Modulation vectorielle asynchrone à flux
	statorique orienté
STW	Mot d'état

SMPS	Alimentation à découpage
THD	Taux d'harmoniques
T _{LIM}	Limite de couple
TTL	Impulsions du codeur TTL (5 V) – Logique de
	transistor
U _{M,N}	Tension nominale du moteur
UL	Underwriters Laboratories (organisation des États-
	Unis responsable de la certification de sécurité)
V	Volts
VSP	Pompe à vitesse variable
VT	Couple variable
VVC ⁺	Commande vectorielle de tension plus

Tableau 14.1 Abréviations et symboles

14.2 Définitions

Résistance de freinage

La résistance de freinage est un module capable d'absorber la puissance de freinage générée lors du freinage par récupération. Cette puissance de freinage par récupération augmente la tension du circuit intermédiaire et un hacheur de freinage veille à transmettre la puissance à la résistance de freinage.

Couple de décrochage

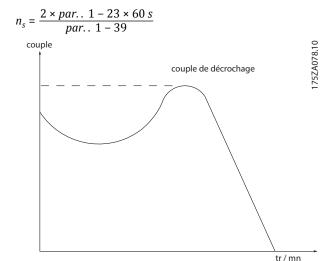


Illustration 14.1 Tableau de couple de décrochage

Roue libre

L'arbre moteur se trouve en fonctionnement libre. Pas de couple sur le moteur.

Caractéristiques de couple constant

Caractéristique de couple constant que l'on utilise pour toutes les applications telles que les convoyeurs à bande, les pompes volumétriques et les grues.

Initialisation

Si l'on effectue une initialisation (*paramétre 14-22 Operation Mode*), le variateur revient à ses réglages par défaut.

Cycle d'utilisation intermittent

Une utilisation intermittente fait référence à une séquence de cycles d'utilisation. Chaque cycle est composé d'une période en charge et d'une période à vide. Le fonctionnement peut être périodique ou non périodique.

Facteur de puissance

Le facteur de puissance réelle (lambda) tient compte de toutes les harmoniques et est toujours plus petit que le facteur de puissance (cos phi) qui considère uniquement le fondamental de courant et de tension.

$$\cos \phi = \frac{P \text{ (kW)}}{P \text{ (kVA)}} = \frac{U\lambda x I\lambda x \cos \phi}{U\lambda x I\lambda}$$

Le cos phi est également appelé facteur de puissance de déphasage.

Les valeurs lambda et cos phi sont indiquées pour les variateurs VLT[®] Danfoss dans le *chapitre 7.3 Alimentation secteur*.

Le facteur de puissance indique dans quelle mesure le variateur impose une charge au secteur. Plus le facteur de puissance est bas, plus l'I_{RMS} est élevé pour la même performance en kW. En outre, un facteur de puissance élevé indique que les harmoniques de courant sont faibles.

Tous les variateurs Danfoss ont des bobines CC intégrées dans le circuit intermédiaire pour avoir un facteur de puissance élevé et pour réduire le THD sur l'alimentation principale.

Entrée impulsions/codeur incrémental

Un capteur numérique externe utilisé pour l'information de retour de la vitesse et de la direction du moteur. Les codeurs sont utilisés pour le retour de précision à haute vitesse et les applications ultra-dynamiques.

Compensation du glissement

Le variateur compense le glissement du moteur en augmentant la fréquence en fonction de la charge du moteur mesurée, la vitesse du moteur restant ainsi quasiment constante.

Contrôleur logique avancé (SLC)

Le SLC est une séquence d'actions définies par l'utilisateur exécutées lorsque les événements associés définis par l'utilisateur sont évalués comme étant TRUE (vrai) par le SLC. (Groupe de paramètres 13-** Logique avancée).

Bus standard FC

Inclut le bus RS485 avec le protocole FC ou MC. Voir le *paramétre 8-30 Protocol*.

Thermistance

Résistance dépendant de la température placée à l'endroit où l'on souhaite surveiller la température (variateur ou moteur).

Alarme

État résultant de situations de panne, p. ex. en cas de surchauffe du variateur ou lorsque celui-ci protège le moteur, le process ou le mécanisme. Le redémarrage est impossible tant que l'origine de la panne n'a pas été résolue et jusqu'à ce que l'état d'arrêt soit annulé.

Alarme verr.

État résultant de situations de panne lorsque le variateur assure sa propre protection et nécessite une intervention physique. Une alarme verrouillée peut être annulée uniquement par coupure du secteur, résolution de l'origine de la panne et reconnexion du variateur. Le redémarrage est impossible tant que l'alarme verrouillée n'a pas été annulée en activant Reset.

Caractéristique Couple Variable

Caractéristiques de couple variable pour les pompes et les ventilateurs.

ndice	Bus de terrain 37, 157
A	С
Abréviations214	Câbles
	Acheminement
Adaptation automatique au moteur (AMA)	Blindage 155, 180
Configuration de câblage	du moteur 162
Pompe submersible	Caractéristiques et types de câbles 153
Vue d'ensemble	Connexions de l'alimentation 155
Alarme	Contrôle 156
Points pour les variateurs 380-480 V41	Égalisation 157
Points pour les variateurs 525-690 V45	Frein 156
Alimentation	Nombre et taille maximum par phase41, 43
Connexions	Ouverture 57, 63, 79, 88, 99, 109, 120
Pertes41, 45	Spécifications 41, 45, 53
Spécifications	Câbles de commande 156
Valeurs nominales41, 45	
	Calculs
Alimentation 24 V CC 159	Couple de freinage
Altitude 150	Cycle d'utilisation de la résistance
Analogique	Logiciel des harmoniques
Analogique Configuration de câblege nour le référence de vitesse 105	Rapport de court-circuit
Configuration de câblage pour la référence de vitesse 195 Descriptions des entrées/sorties et réglages par défaut	Référence mise à l'échelle
Descriptions des entrees/sorties et regiages par deraut	Résistance de freinage
Spécifications de sortie54	THDi
Spécifications d'entrée	Caractéristique IP10
•	Carte de commande
Atmosphère explosive 147	Point de déclenchement surtension
Atténuation des résonances	Spécifications
Auto on 185	Spécifications RS48554
	Carte relais étendue
Avertissement haute tension	
Avertissements 6, 153	Carte thermistance PTC
	CEM
В	Compatibilité 179
	Directive8
Basse tension	Généralités 176
Directive	Installation 181
Bipasse de fréquence	Interférences 180
·	Résultats des essais 177
Blindage	Certificat TÜV9
Câbles	
Extrémités torsadées	Certificat UKrSEPRO9
Secteur	Certification maritime
Terminalson Kri 155	Chauffage
Bornes	Schéma de câblage154
Borne 37 159	Utilisation
des relais 159	
Communication série 158	Circulation d'air
Descriptions des commandes et réglages par défaut 158	Configurations 34
Entrée/sortie analogique 159	Circulation d'air
Entrée/sortie digitale 159	Configurations
Répartition de la charge156	Débits149
Résistance de freinage 156	
RS485 158	Code de type
Bornes de commande 158	Commande
Bruit acoustique 170	Communication série 158
,	Commutateur
Bus CC	A53 et A54 53, 159
Bornes	·
Description du fonctionnement 185	Commutateurs
	Sectionneur 161

Compensation du glissement	214		
Condensation	146	D	
Conditions ambiantes		Déclassement	
Spécifications	52	Altitude	150
Vue d'ensemble		Considérations de température	53, 148
		Fonction automatique	18
Conditions d'émission		Fonctionnement à basse vitesse	149
Conditions d'immunité	178	Fréquence de commutation élevée	19
Configuration de câblage de réinitialisation d'alarn	ne externe	Température et fréquence de commutation	150
comiguration de cablage de remitalisation à diam	197	Vue d'ensemble et causes	149
Configurations de câblage pour marche/arrêt		Décolmatage	29
		Démarrage à la volée	22
Configurations de montage		Déséquilibre tension	
Confirmation du débit	31	DeviceNet	
Conformité			37, 207
Avec ADN		Digitale	
Directives	8	Descriptions des entrées/sorties et réglages pa	
Connexion à un PC	156		159
		Spécifications de sortie	
Contrôle		Spécifications d'entrée	53
Caractéristiques		Dimensions	
Description du fonctionnement		Aperçu des produits de la série	13
Structures		Borne D1h	
Types de	190, 191	Borne D2h	
Contrôle de process	191	Borne D3h	72
Contrôleur de cascade		Borne D4h	77
Schéma de câblage	202	Borne D5h	84
Utilisation avec un contacteur		Borne D6h	93
Vue d'ensemble		Borne D7h	105
		Borne D8h	114
Contrôleur logique avancé	100	Borne E1h	124
Configuration de câblage		Borne E2h	130
Vue d'ensemble	23	Borne E3h	
Conventions	5	Borne E4h	
Couple		Extérieures D1h	
Caractéristique	52	Extérieures D2h	
Contrôle		Extérieures D3h	
		Extérieures D4h	
Couple de décrochage	214	Extérieures D5h	
Courant		Extérieures D6h	
Atténuation du moteur	164	Extérieures D7h	
Contrôle de courant interne	194	Extérieures D8h	
de fuite	167, 168	Extérieures E1h	
fondamental	182	Extérieures E2h	
nominal de sortie		Extérieures E3h Extérieures E4h	
Distorsion		exterieures e411	139
Formule de limite de courant		Dimensions des bornes	
Harmoniques de courant	182	D1h	
Terre transitoire	168	D2h	
Courant de fuite	6	D3h	
Courant de fuite ;	167	D4h D5h	
Court-circuit		D6h	
Calcul du rapport	183	D7h	
Définition		D8h	
Freinage		E1h	
Protection		E2h	130
SCCR nominal		E3h	136
		E4h	143
Cycle d'utilisation Calcul	164		
CalCul	104		

Dimensions extérieures	Filtres
D1h57	Commande 212
D2h63	Filtre de mode commun
D3h69	Filtre dU/dt 39
D4h74	Filtre harmonique 40
D5h	Filtre RFI
D6h	Filtre sinus 39, 155
D7h	Flux
D8h	Structure de contrôle dans flux sans capteur 193
E1h	Structure de contrôle en flux avec signal de retour du mo-
E2h	teur 193
E31	Fonctionnement à basse vitesse
	Formule
Directive ErP	Courant de sortie
Directive Machines 8	Limite de courant
Disjoncteur 161, 168	Puissance nominale de la résistance de freinage 213
Dissipateur de chaleur	Rendement du variateur 213
Débit d'air requis	Freinage
Nettoyage	À utiliser comme fonction de freinage alternative 167
Panneau d'accès	Contrôle avec la fonction de freinage alternative 167
Point de déclenchement surtension	dynamique
	Limites
DU/dt	Tableau de capacité
Résultats des essais pour D1h–D8h	
Résultats des essais pour E1h–E4h	Freinage CA32
Vue d'ensemble	Freinage CC32
É	Freinage résistance
L	Fréquence de commutation
Émission par rayonnement 177	À utiliser avec des RCD 168
Émission transmise	Connexions de l'alimentation 155
f:	Déclassement
Énergie	Filtre sinus
Classe de rendement 52	Fusibles
	À utiliser avec des connexions de l'alimentation
E	Protection contre les surintensités
Ensembles de langues	Spécifications160
•	'
Entrée utilisateur	G
Environnement	
Environnement commercial	Gaz147
Environnement résidentiel	General purpose I/O module 38
Espace pour la porte 57, 63, 79, 88, 99, 109, 120	Gestion de la largeur de bande28
	Guide de programmation 5
Ethernet/IP	. 3
É	Н
	Hand on 185
Étrier de serrage	Harmoniques
	Atténuation 184
F	Définition du facteur de puissance
Fils	Filtre
voir aussi <i>Câbles</i>	Normes CEI
	Normes FN 183
Filtre de mode commun	Vue d'ensemble
Filtre sinus	Homologation CSA/cUL9
	_
	Humidité

Moteur

1	Atténuation des courants de palier	
Impulsion	Câbles 16	
Configurations de câblage pour marche/arrêt 196	Classe de protection	
Spécifications d'entrée54	Configuration de câblage pour une thermistance Contrainte d'isolation	
Installation	Couple intégral	
Électrique	Courant de fuite	
Exigences	Définition du couple de décrochage	
Personnel qualifié	Détection d'absence de phase	
•	Ex-d	
Installation à haute altitude	Ex-e	2
Interférence électromagnétique19	Isolation	16
Interférences de radio fréquence	à stator chemisé	
Isolation	Plaque signalétique	
	Protection thermique	
Isolation galvanique	Raccordement en parallèle	
	RetourRotation	
K	Schéma de câblage	
Kits	Spécifications de sortie	
Descriptions	·	
Disponibilité des boîtiers	Moteur à stator chemisé	20
Références		
1.0(3.0)	0	
1	Onduleur	18
L		
Levage	Optimisation automatique de l'énergie (AEO)	
	Option entrée capteur	38
M	Options	
	Bus de terrain	3
Maintenance	Cartes relais	
Manuel d'utilisation 5	Commande20)7, 20
Marquage CE 8	Contrôle de mouvement	
· · · ·	Contrôleur de cascade	
Marque EAC	Disponibilité des boîtiers	
Marque RCM9	Extensions fonctionnelles	
Menu rapide	Ordinateur personnel	15
Méthode de Fourier		
	Р	
Mise à la terre	Damagu da garrarra	12
Modbus	Panneau de coupure	
Option	PELV	54, 17
Mode boucle fermée	Personnel qualifié	(
Schéma fonctionnel 190	PID	
Vue d'ensemble189	Contrôleur	20
Mode boucle ouverte	Régulateur	
Option de contrôleur de cascade26		
Schéma fonctionnel 189	Pièces de rechange	
Vue d'ensemble189	Plaque presse-étoupe 57, 63, 79, 88, 99, 10	19, 12
Mode de remplissage des tuyaux 201	PLC	15
	Point de couplage commun	
Modulation 19, 213		10.
Modulation automatique de la fréquence de commutation	Pompe	_
19	Démarrage	
	Rendement	2
	Pompe submersible	
	Réglages	
	Schéma de câblage	200

..... 31

Utilisée avec la surveillance de la vitesse minimum avancée

Potentiomètre 159	, 198	Relais	
Pré/post-lubrification	30	Bornes	
•		Carte	
Préchauffage		Contrôleur de cascade	
PROFIBUS 37	, 207	Installation selon les critères ADN	
PROFINET	37	OptionOption de carte relais étendue	
Protection		Spécifications	
Court-circuit	17		
Déséquilibre de tension d'alimentation		Relais de protection différentielle 1	
Fonction de freinage		Relais thermique électronique (ETR)	153
Niveau de protection		Rendement	
Nominale	10	Calcul	169
Surcharge	18	Formule de rendement du variateur	213
Surintensité		Spécifications	
Surtension		Utilisation de l'AMA	20
Thermique moteur	20	Répartition de la charge	
Protection contre les surintensités	. 153	Avertissement	6
Protection du boîtier	10	Bornes	33, 156
Protection nominale NEMA		Protection contre les courts-circuits	
Protection nominale NEMA	10	Schéma de câblage	
Puissance		Vue d'ensemble	32
Dimensionnement		Réseau IT	169
Facteur	. 214	Résistance de freinage	
		Bornes	156
Q		Commande	
Queues de cochon	180	Définition	214
Queues de Cochon	. 100	Formule de puissance nominale	213
0		Manuel de configuration	
R		Schéma de câblage	
Redémarrage	22	Sélection	
Redresseur	195	Vue d'ensemble	39
	. 105	Retour	
Référence		Conversion	188
Entrée de vitesse		Gestion	
activedistante		Signal	190
Utilisation à distance des		Réveil périodique	146
		RFI	
Référence active	. 185	Emplacement de la terminaison du blindage E3h	135
Référence distante	. 186	Emplacement de la terminaison du blindage E4h	
Référence mise à l'échelle	. 186	Filtre	179
Refroidissement		Utilisation d'un commutateur avec le réseau IT	169
Retroiaissement Avertissement poussière	1/17	Rotor	18
Exigences		Roue libre	
Vue d'ensemble du refroidissement par le canal de ve			29
tion arrière		RS485	
Refroidissement par gaine	1/10	Bornes	
		Bus standard FC	
Refroidissement par le canal de ventilation arrière 34	, 148	Configuration de câblageSchéma de câblage	
Régén		Scrienia de Cabiage	134
Bornes	. 124		
Régén.		S	
Bornes	72	Safe Torque Off	
Disponibilité		Configuration de câblage	196
Vue d'ensemble	33	Conformité à la directive Machines	8
Réglementations sur le contrôle d'exportation	9	Emplacement des bornes	
		Manuel d'utilisation	
		Schéma de câblage	
		Vue d'ensemble	24
		Sauvegarde cinétique	22

Schéma de câblage
Alternance de la pompe principale
Contrôleur de cascade
Pompe à vitesse variable/fixe
Variateur
Secteur
Blindage
Fluctuations
Panne
Spécifications
Spécifications de l'alimentation 52
Sectionneur
Sécurité
Instructions
SmartStart
Sortie 10
Contacteur
Spécifications
Spécifications d'entrée
Spécifications électriques41, 45
Spécifications électriques 380-480 V
Spécifications électriques 525-690 V
Spécifications USB
STO
voir aussi Safe Torque Off
von aassi sale loique on
Stockage 146
•
Stockage
Stockage
Stockage 146 Stockage condensateur 146 Surcharge Limites 18 Problèmes avec les harmoniques 182
Stockage 146 Stockage condensateur 146 Surcharge Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20
Stockage 146 Stockage condensateur 146 Surcharge Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20
Stockage 146 Stockage condensateur 146 Surcharge Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Fonction de freinage alternative 167
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Fonction de freinage alternative 167 Freinage 39
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Fonction de freinage alternative 167 Freinage 39 Protection 17
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Fonction de freinage alternative 167 Freinage 39
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147 Temps de décharge 6
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147 Temps de décharge 6 Temps de montée 170 Thermistance 170
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147 Temps de décharge 6 Temps de montée 170 Thermistance Configuration de câblage 199
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Temps de décharge 6 Temps de montée 170 Thermistance Configuration de câblage 199 Définition 214
Stockage 146 Stockage condensateur 146 Surcharge 18 Limites 18 Problèmes avec les harmoniques 182 thermique électronique 20 Surcharge thermique électronique 20 Surtempérature 214 Surtension 167 Freinage 39 Protection 17 Surveillance ATEX 21, 147 Surveillance de la vitesse minimum avancée 31 T Température 147 Temps de décharge 6 Temps de montée 170 Thermistance Configuration de câblage 199

U	
UL Marque d'homologation Protection nominale des boîtiers	
V	
Variateur Dimensionnements puissance Dimensions des produits de la série Exigences de dégagement Système de configuration	13 148
Ventilateurs Débit d'air requis à température contrôlée	
Versions logicielles	207
	ion 198
Configuration de câblage pour la référence de vi Contrôle Retour PID	190
VVC+	192, 194

Danfoss VLT Drives

1 bis Av. Jean d'Alembert, 78990 Elancourt France Tél.: +33 (0) 1 30 62 50 00

Fax.: +33 (0) 1 30 62 50 26 e-mail: Variateurs.vlt@danfoss.fr

www.drives.danfoss.fr

Danfoss VLT Drives

A. Gossetlaan 28, 1702 Groot-Bijgaarden Belgique Tél.: +32 (0) 2 525 0711

Fax.: +32 (0) 2 525 07 57 e-mail: drives@danfoss.be www.danfoss.be/drives/fr Danfoss AG, VLT® Antriebstechnik

Parkstrasse 6 CH-4402 Frenkendorf Tél.: +41 61 906 11 11 Telefax: +41 61 906 11 21 www.danfoss.ch

Danfoss décline toute responsabilité quant aux erreurs qui se seraient glissées dans les catalogues, brochures ou autres documentations écrites. Dans un souci constant d'amélioration, Danfoss se réserve le droit d'apporter sans préavis toutes modifications à ses produits, y compris ceux se trouvant déjà en commande, sous réserve, toutefois, que ces modifications n'affectent pas les caractéristiques déjà arrêtées en accord avec le client. Toutes les marques de fabrique de cette documentation sont la propriété des sociétés correspondantes. Danfoss et le logotype Danfoss sont des marques de fabrique de Danfoss A/S. Tous droits réservés.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com