

Manuel de configuration

VLT® AutomationDrive FC 301/302

0,25-75 kW

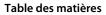
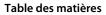


Table des matières

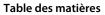
1	Introduction	8
	1.1 Objet du Manuel de configuration	8
	1.2 Ressources supplémentaires	8
	1.3 Abréviations, symboles et conventions	8
	1.4 Définitions	9
	1.5 Version de document et de logiciel	10
	1.6 Indications de conformité	11
	1.6.1 Marquage CE	11
	1.6.1.1 Directive basse tension	11
	1.6.1.2 Directive CEM	11
	1.6.1.3 Directive machine	11
	1.6.2 Conformité UL	11
	1.6.3 Conformité C-Tick	12
	1.6.4 Conformité marine	12
	1.7 Instruction de mise au rebut	12
	1.8 Sécurité	12
ว	Sécurité	13
	2.1 Symboles de sécurité	13
	2.2 Personnel qualifié	13
	2.3 Précautions de sécurité	13
	2.5 i recautions de securite	13
3	Principes de fonctionnement de base	15
	3.1 Généralités	15
	3.2 Description du fonctionnement	15
	3.3 Séquence de fonctionnement	15
	3.3.1 Section redresseur	15
	3.3.2 Section intermédiaire	15
	3.3.3 Section d'onduleur	15
	3.3.4 Option de freinage	15
	3.3.5 Répartition de la charge	16
	3.4 Interface de commande	16
	3.5 Schéma de câblage	17
	3.6 Contrôles	19
	3.6.1 Principe de contrôle	19
	3.6.2 FC 301 vs. FC 302 Principe de fonctionnement	20
	3.6.3 Structure de contrôle dans VVC ^{plus}	21
	3.6.4 Structure de contrôle flux sans capteur (FC 302 seulement)	22
	3.6.5 Structure de contrôle en flux avec signal de retour du moteur (FC 302 seulement)	23



3.6.6 PID	24
3.6.6.1 Régulateur PID de vitesse	24
3.6.6.2 Réglage du régulateur PID de vitesse	26
3.6.6.3 Régulateur PID de process	27
3.6.6.4 Régulateur PID avancé	29
3.6.7 Contrôle de courant interne en mode VVC ^{plus}	29
3.6.8 Contrôle local (Hand On) et distant (Auto On)	29
3.7 Utilisation des références	30
3.7.1 Références	30
3.7.2 Limites de référence	32
3.7.3 Mise à l'échelle des références prédéfinies et des références du bus	33
3.7.4 Mise à l'échelle des références et du retour analogiques et d'impulsions	33
3.7.5 Zone morte autour de zéro	34
4 Caractéristiques produit	38
4.1 Caractéristiques opérationnelles automatisées	38
4.1.1 Protection contre les courts-circuits	38
4.1.2 Protection contre les surcharges	38
4.1.3 Détection de phase moteur manquante	39
4.1.4 Détection de défaut de phase secteur	39
4.1.5 Commutation sur la sortie	39
4.1.6 Protection surcharge	39
4.1.7 Protec. rotor verrouillé	39
4.1.8 Déclassement automatique	39
4.1.9 Optimisation automatique de l'énergie (AEO)	40
4.1.10 Modulation automatique de la fréquence de commutation	40
4.1.11 Déclassement automatique pour fréquence porteuse élevée	40
4.1.12 Performance de fluctuation de la puissance	40
4.1.13 Atténuation des résonances	40
4.1.14 Ventilateurs à température contrôlée	40
4.1.15 Conformité CEM	40
4.1.16 Isolation galvanique des bornes de commande	41
4.2 Fonctions de protection de l'application	41
4.2.1 Adaptation automatique au moteur	41
4.2.2 Protection thermique du moteur	41
4.2.3 Panne de secteur	42
4.2.4 Régulateur PID intégré	42
4.2.5 Redémarrage automatique	42
4.2.6 Démarrage à la volée	42
4.2.7 Couple complet à vitesse réduite	43
4.2.8 Bipasse de fréquence	43

	4.2.9 Préchauffage du moteur	43
	4.2.10 4 configurations programmables	43
	4.2.11 Freinage dynamique	43
	4.2.12 Commande de frein mécanique en boucle ouverte	43
	4.2.13 Commande de frein mécanique en boucle ouverte/Frein mécanique de levage	44
	4.2.14 Contrôleur logique avancé (SLC)	46
	4.2.15 Absence sûre du couple	47
	4.3 Danfoss VLT® FlexConcept®	47
5 lı	ntégration du système	48
	5.1 Conditions ambiantes de fonctionnement	48
	5.1.1 Humidité	48
	5.1.2 Température	48
	5.1.3 Température et refroidissement	48
	5.1.4 Déclassement manuel	49
	5.1.4.1 Déclassement pour fonctionnement à faible vitesse	49
	5.1.4.2 Déclassement pour basse pression atmosphérique	49
	5.1.5 Bruit acoustique	50
	5.1.6 Vibrations et chocs	50
	5.1.7 Atmosphères agressives	50
	5.1.7.1 Gaz	50
	5.1.7.2 Exposition à la poussière	51
	5.1.7.3 Atmosphères potentiellement explosives	51
	5.1.8 Maintenance	52
	5.1.9 Stockage	52
	5.2 Généralités concernant les normes CEM	52
	5.2.1 Résultats des essais CEM	54
	5.2.2 Conditions d'émission	55
	5.2.3 Conditions d'immunité	55
	5.2.4 Isolation du moteur	56
	5.2.5 Courants des paliers de moteur	57
	5.3 Perturbations alimentation secteur/harmoniques	57
	5.3.1 Effet des harmoniques dans un système de distribution de puissance	58
	5.3.2 Normes et exigences quant aux limites d'harmoniques	58
	5.3.3 Atténuation des harmoniques	59
	5.3.4 Calcul d'harmoniques	59
	5.4 Isolation galvanique (PELV)	59
	5.4.1 PELV - Protective Extra Low Voltage	59
	5.5 Fonctions de freinage	60
	5.5.1 Sélection de la résistance de freinage	60

6 Spécifications du produit	63
6.1 Données électriques	63
6.1.1 Alimentation secteur 200-240 V	63
6.1.2 Alimentation 380-500 V	65
6.1.3 Alimentation secteur 525-600 V (FC 302 uniquement)	68
6.1.4 Alimentation secteur 525-690 V (FC 302 uniquement)	71
6.2 Spécifications générales	74
6.2.1 Alimentation secteur	74
6.2.2 Puissance et données du moteur	74
6.2.3 Conditions ambiantes	75
6.2.4 Câble : spécifications	75
6.2.5 Entrée/sortie de commande et données de commande	75
6.2.6 Déclassement pour température ambiante	79
6.2.6.1 Déclassement pour température ambiante, protection de type A	79
6.2.6.2 Déclassement pour température ambiante, protections de types B	79
6.2.6.3 Déclassement pour température ambiante, protections de types C	82
6.2.7 Valeurs mesurées pour le test dU/dt	85
6.2.8 Rendement	87
6.2.9 Bruit acoustique	88
7 Commande	89
7.1 Système de configuration du variateur	89
7.1.1 Code type	89
7.1.2 Langue	91
7.2 Références	92
7.2.1 Options et accessoires	92
7.2.2 Pièces de rechange	94
7.2.3 Sacs d'accessoires	94
7.2.4 VLT AutomationDrive FC 301	95
7.2.5 Résistances de freinage pour FC 302	97
7.2.6 Autres résistances de freinage flatpack	101
7.2.7 Filtres harmoniques	103
7.2.8 Filtres sinus	105
7.2.9 Filtres dU/dt	107
8 Installation mécanique	109
8.1 Sécurité	109
8.2 Encombrement	109
8.2.1 Montage mécanique	112
8.2.1.1 Dégagement	112



112
114
114
114
115
116
120
120
124
124
124
125
128
133
136
137
137
138
139
139
139
140
140
140
141
141
141
144
144
144
144
145
145
150
150
151
153
153



11.2 E/S, options de retour et de sécurité	153
11.2.1 Module d'option d'E/S à usage général MCB 101 VLT®	153
11.2.2 Option de codeur VLT [®] MCB 102	154
11.2.3 Option du résolveur VLT [®] MCB 103	156
11.2.4 Carte relais VLT [®] MCB 105	158
11.2.5 Option d'interface PLC de sécurité VLT [®] MCB 108	160
11.2.6 Carte thermistance PTC VLT® MCB 112	161
11.2.7 Carte relais étendue VLT® MCB 113	162
11.2.8 Option d'entrée du capteur VLT [®] MCB 114	164
11.2.9 Option de sécurité VLT [®] MCB 15x	165
11.2.10 Adaptateur de l'option C VLT [®] MCF 106	169
11.3 Options de contrôle de mouvement	169
11.4 Accessoires	171
11.4.1 Résistances de freinage	171
11.4.2 Filtres sinus	171
11.4.3 Filtres dU/dt	171
11.4.4 Filtres en mode commun	171
11.4.5 Filtres harmoniques	172
11.4.6 Kit de protection IP21/Type 1	172
11.4.7 Kit de montage externe pour LCP	174
11.4.8 Support de fixation pour protections de types A5, B1, B2, C1 et C2	175
12 Installation et configuration de l'interface RS-485	177
12.1 Installation et configuration	177
12.1.1 Vue d'ensemble	177
12.2 Raccordement du réseau	178
12.3 Terminaison du bus	178
12.4 Installation et configuration de l'interface RS-485	178
12.5 Vue d'ensemble du protocole FC	179
12.6 Configuration du réseau	179
12.7 Structure des messages du protocole FC	179
12.7.1 Contenu d'un caractère (octet)	179
12.7.2 Structure du télégramme	179
12.7.3 Longueur du télégramme (LGE)	180
12.7.4 Adresse (ADR) du variateur de fréquence	180
12.7.5 Octet de contrôle des données (BCC)	180
12.7.6 Champ de données	181
12.7.7 Champ PKE	182
12.7.8 Numéro de paramètre (PNU)	182
12.7.9 Indice (IND)	182

12.7.10 Valeur du paramètre (PWE)	183
12.7.11 Types de données pris en charge	183
12.7.12 Conversion	183
12.7.13 Mots de process (PCD)	184
12.8 Exemples	184
12.8.1 Écriture d'une valeur de paramètre	184
12.8.2 Lecture d'une valeur de paramètre	184
12.9 Vue d'ensemble du Modbus RTU	185
12.9.1 Hypothèses de départ	185
12.9.2 Ce que l'utilisateur doit déjà savoir	185
12.9.3 Vue d'ensemble du Modbus RTU	185
12.9.4 Variateur de fréquence avec Modbus RTU	185
12.10 Configuration du réseau	186
12.11 Structure des messages du Modbus RTU	186
12.11.1 Variateur de fréquence avec Modbus RTU	186
12.11.2 Structure des messages Modbus RTU	186
12.11.3 Champ démarrage/arrêt	186
12.11.4 Champ d'adresse	187
12.11.5 Champ de fonction	187
12.11.6 Champ de données	187
12.11.7 Champ de contrôle CRC	187
12.11.8 Adresse de registre des bobines	187
12.11.9 Comment contrôler le variateur de fréquence	189
12.11.10 Codes de fonction pris en charge par le Modbus RTU	189
12.11.11 Codes d'exceptions Modbus	189
12.12 Comment accéder aux paramètres	190
12.12.1 Gestion des paramètres	190
12.12.2 Stockage des données	190
12.12.3 IND (Index)	190
12.12.4 Blocs de texte	190
12.12.5 Facteur de conversion	190
12.12.6 Valeurs de paramètre	190
12.13 Danfoss Profil de contrôle FC	191
12.13.1 Mot de contrôle conforme au Profil FC (8-10 Profil de ctrl = profil FC)	191
12.13.2 Mot d'état selon profil FC (STW) (8-10 Profil de ctrl = profil FC)	192
12.13.3 Valeur de référence de vitesse du bus	194
12.13.4 Mot de contrôle selon le Profil PROFIdrive (CTW)	194
12.13.5 Mot d'état selon le Profil PROFIdrive (STW)	196
e	198

1 Introduction

1.1 Objet du Manuel de configuration

Le Manuel de configuration donne les informations requises pour intégrer le variateur de fréquence dans diverses applications.

VLT® est une marque déposée.

1.2 Ressources supplémentaires

D'autres ressources sont disponibles pour bien comprendre les fonctions avancées et la programmation des variateurs de fréquence ainsi que le respect des directives.

- Le Manuel d'utilisation vise à fournir des informations détaillées sur l'installation et la mise en marche du variateur de fréquence.
- Le Guide de programmation fournit de plus amples détails sur la gestion des paramètres et donne de nombreux exemples d'applications.
- Le Manuel d'utilisation de l'Absence sûre du couple VLT[®] décrit comment utiliser les applications de sécurité fonctionnelle des variateurs de fréquence Danfoss.
- Des publications et des manuels supplémentaires sont disponibles auprès de Danfoss. Consulter le danfoss.com/Product/Literature/Technical +Documentation.htm pour en obtenir la liste.
- La présence d'équipements optionnels peut changer certaines des procédures décrites. Veiller à lire les instructions fournies avec ces options pour en connaître les exigences spécifiques.

Contacter un fournisseur Danfoss ou consulter le site www.danfoss.com pour obtenir des informations complémentaires.

1.3 Abréviations, symboles et conventions

Conventions

Les listes numérotées correspondent à des procédures. Les listes à puce indiquent d'autres informations et décrivent des illustrations.

Les textes en italique indiquent :

- des références croisées
- lien
- note de bas de page
- nom de paramètre, nom de groupe de paramètres, option de paramètre

60° AVM	Modulation vectorielle asynchrone 60°	
A	Ampère	
CA	Courant alternatif	
AD	Rejet d'air	
Al	Entrée analogique	
AMA	Adaptation automatique au moteur	
AWG	Calibre américain des fils	
°C	Degrés Celsius	
CD	Décharge constante	
CM	Mode commun	
TC	Couple constant	
СС	Courant continu	
DI	Entrée digitale	
DM	Mode différentiel	
D-TYPE	Dépend du variateur	
CEM	Compatibilité électromagnétique	
ETR	Relais thermique électronique	
f _{JOG}	Fréquence du moteur lorsque la fonction	
	jogging est activée	
f _M	Fréquence du moteur	
f _{MAX}	Fréquence de sortie maximum que le variateur	
	de fréquence applique à sa sortie	
f _{MIN}	Fréquence moteur minimale du variateur de	
	fréquence	
f _{M,N}	Fréquence nominale du moteur	
FC	Variateur de fréquence	
g	Gramme	
Hiperface®	Hiperface® est une marque déposée de	
	Stegmann	
HP	Cheval-puissance	
HTL	Impulsions du codeur HTL (10-30 V) - Haute	
	tension logique de transistor	
Hz	Hertz	
I _{INV}	Courant de sortie nominal onduleur	
I _{LIM}	Limite de courant	
I _{M,N}	Courant nominal du moteur	
I _{VLT,MAX}	Courant de sortie maximal	

I _{VLT,N}	Courant nominal de sortie fourni par le	
	variateur de fréquence	
kHz	KiloHertz	
LCP	Panneau de commande local	
Isb	Bit de poids faible	
m	Mètre	
mA	Milliampère	
MCM	Mille Circular Mil	
MCT	Outil de contrôle du mouvement	
mH	Inductance en millihenry	
min	Minute	
	Milliseconde	
ms		
msb	Bit de poids fort	
η_{VLT}	Le rendement du variateur de vitesse est	
	défini comme le rapport entre la puissance	
-	dégagée et la puissance absorbée	
nF	Nanofarad	
NLCP	Panneau de commande local numérique	
Nm	Newton-mètres	
ns	Vitesse du moteur synchrone	
Paramètres en	Les modifications apportées aux paramètres	
ligne/hors ligne	en ligne sont activées directement après	
	modification de la valeur des données.	
P _{rf,cont} .	Puissance nominale de la résistance de	
	freinage (puissance moyenne pendant le	
	freinage continu)	
PCB	Carte à circuits imprimés	
PCD	Données de process	
PELV	Très basse tension de protection	
P_{m}	Puissance de sortie nominale du variateur de	
	fréquence SE	
P _{M,N}	Puissance nominale du moteur	
Moteur PM	Moteur à magnétisation permanente	
Process PID	Le régulateur PID maintient les vitesse,	
	pression, température, etc.	
$R_{fr,nom}$	Valeur de résistance nominale qui garantit une	
	puissance de freinage sur l'arbre moteur de	
	150 %/160 % pendant une minute	
RCD	Relais de protection différentielle	
Régén	Bornes régénératives	
R _{min}	Valeur de la résistance de freinage minimale	
	autorisée par variateur de fréquence	
RMS	Valeur quadratique moyenne	
tr/min	Tours par minute	
R _{rec}	Valeur de résistance et résistance de la	
	résistance de freinage	
s	Seconde	
SFAVM	Type de modulation appelé Stator Flux	
	oriented Asynchronous Vector Modulation (modulation vectorielle asynchrone à flux	
	statorique orienté).	
STW	Mot d'état	
SMPS	Alimentation en mode commutation	
THD	Distorsion harmonique totale	

TTL	Impulsions du codeur TTL (5 V) - Logique de	
	transistor	
U _{M,N}	Tension nominale du moteur	
V	Volts	
VT	Couple variable	
VVC ^{plus}	Commande vectorielle de tension	

Tableau 1.1 Abréviations

Les symboles suivants sont utilisés dans ce document :

AAVERTISSEMENT

Indique une situation potentiellement dangereuse qui peut entraîner des blessures graves ou le décès.

AATTENTION

Indique une situation potentiellement dangereuse qui peut entraîner des blessures superficielles à modérées. Ce signe peut aussi être utilisé pour mettre en garde contre des pratiques non sûres.

AVIS!

Indique des informations importantes, y compris des situations qui peuvent entraîner des dégâts matériels.

1.4 Définitions

Roue libre

L'arbre moteur se trouve en fonctionnement libre. Pas de couple sur le moteur.

Résistance de freinage

La résistance de freinage est un module capable d'absorber la puissance de freinage générée lors du freinage par récupération. Cette puissance de freinage par récupération augmente la tension du circuit intermédiaire et un hacheur de freinage veille à transmettre la puissance à la résistance de freinage.

Caractéristiques de couple constant (CC)

Caractéristiques de couple constant que l'on utilise pour toutes les applications telles que les convoyeurs à bande, les pompes volumétriques et les grues.

Initialisation

Si l'on effectue une initialisation (voir le par. 14-22 Mod. exploitation), le variateur de fréquence rétablit les réglages par défaut.

Cycle d'utilisation intermittent

Une utilisation intermittente fait référence à une séquence de cycles d'utilisation. Chaque cycle est composé d'une période en charge et d'une période à vide. Le fonctionnement peut être périodique ou non périodique.

1

Limite de couple

T_{LIM}

Process

Enregistrement des réglages des paramètres dans quatre process. Changement d'un process à l'autre et édition d'un process pendant qu'un autre est actif.

Compensation du glissement

Le variateur de fréquence compense le glissement du moteur en augmentant la fréquence en fonction de la charge du moteur mesurée, la vitesse du moteur restant ainsi quasiment constante.

Contrôleur logique avancé (SLC)

Le SLC est une séquence d'actions définies par l'utilisateur et exécutées lorsque les événements associés définis par l'utilisateur sont évalués comme étant VRAI par le contrôleur logique avancé (Groupe de paramètres 13-** Logique avancée.

Bus standard FC

Inclut le bus RS-485 avec le protocole FC ou MC. Voir le par. *8-30 Protocole*.

Thermistance

Résistance dépendant de la température placée à l'endroit où l'on souhaite surveiller la température (variateur de fréquence ou moteur).

Alarme

État résultant de situations de panne, p. ex. en cas de surchauffe du variateur de fréquence ou lorsque celui-ci protège le moteur, le processus ou le mécanisme. Le redémarrage est impossible tant que l'origine de la panne n'a pas été résolue ; l'état d'alarme est annulé par un reset ou, dans certains cas, grâce à un reset programmé automatiquement. L'alarme ne peut pas être utilisée à des fins de sécurité des personnes.

Alarme verrouillée

État résultant de situations de panne lorsque le variateur de fréquence assure sa propre protection et nécessitant une intervention physique, p. ex. si la sortie du variateur fait l'objet d'un court-circuit. Une alarme verrouillée peut être annulée en coupant l'alimentation secteur, en trouvant l'origine de la panne et en reconnectant le variateur de fréquence. Le redémarrage est impossible tant que l'état d'alarme n'a pas été annulé par un reset ou, dans certains cas, grâce à un reset programmé automatiquement. L'alarme ne peut pas être utilisée à des fins de sécurité des personnes.

Caractéristiques de couple variable (CV)

Caractéristiques de couple variable que l'on utilise pour les pompes et les ventilateurs.

Facteur de puissance

Le Facteur de puissance réelle (lambda) tient compte de toutes les harmoniques et est toujours plus petit que le Facteur de puissance (cosPhi) qui considère uniquement la première harmonique de courant et de tension.

$$\cos \varphi = \frac{P[kW]}{P[kVA]} = \frac{U\lambda \times I\lambda \times \cos \varphi}{U\lambda \times I\lambda}$$

Le CosPhi est également appelé facteur de puissance de déphasage.

Les Lambda and cosPhi sont indiqués pour les variateurs de fréquence VLT® Danfoss au *chapitre 6.2.1 Alimentation secteur.*

Le facteur de puissance indique dans quelle mesure le variateur de fréquence impose une charge à l'alimentation secteur.

Plus le facteur de puissance est bas, plus l'I_{RMS} est élevé pour la même performance en kW.

En outre, un facteur de puissance élevé indique que les différents harmoniques de courant sont faibles. Tous les variateurs de fréquence Danfoss ont des bobines CC intégrés dans le circuit CC pour avoir un facteur de puissance élevé et pour réduire le THD sur l'alimentation principale.

1.5 Version de document et de logiciel

Ce manuel est régulièrement révisé et mis à jour. Toutes les suggestions d'amélioration sont les bienvenues. Le *Tableau 1.2* indique la version du document et la version logicielle correspondante.

Édition	Remarques	Version logiciel
MG33BFxx	Remplace MG33BExx	6.72

Tableau 1.2 Version de document et de logiciel

1.6 Indications de conformité

Les variateurs de fréquence ont été conçus conformément aux directives décrites dans cette section.

1.6.1 Marquage CE

Le marquage CE (Communauté européenne) indique que le fabricant du produit se conforme à toutes les directives CE applicables. Les 3 directives de l'UE applicables à la conception et à la fabrication de variateurs de fréquence sont la directive basse tension, la directive CEM et (pour les dispositifs dotés d'une fonction de sécurité intégrée) la directive sur les machines.

Le marquage CE est destiné à éliminer les barrières techniques au libre-échange entre les états de la CE et de l'EFTA à l'intérieur de l'ECU. Il ne fournit aucune information sur la qualité du produit. Les spécifications techniques ne peuvent pas être déduites du marquage CE.

1.6.1.1 Directive basse tension

Les variateurs de fréquence sont classés comme des composants électroniques et doivent porter le marquage CE conformément à la directive basse tension. La directive s'applique à tous les appareils électriques utilisés dans les plages de tension allant de 50 à 1 000 V CA et de 75 à 1 600 V CC.

La directive précise que la conception de l'équipement doit garantir la sécurité et la santé des personnes ainsi que celle du bétail et préserver le matériel si l'équipement est correctement installé, entretenu et utilisé conformément à l'usage prévu. Danfoss Le marquage CE est conforme à la directive basse tension et fournit un certificat de conformité à la demande.

1.6.1.2 Directive CEM

La compatibilité électromagnétique (CEM) signifie que les interférences électromagnétiques entre les appareils n'altèrent pas leurs performances. Les conditions de base relatives à la protection de la Directive CEM 2004/108/CE indiquent que les dispositifs qui génèrent des interférences électromagnétiques (EMI) ou dont le fonctionnement peut être affecté par les EMI, doivent être conçus pour limiter la génération d'interférences électromagnétiques et doivent présenter un degré d'immunité adapté vis-à-vis des EMI lorsqu'ils sont correctement installés, entretenus et utilisés conformément à l'usage prévu.

Un variateur de fréquence peut être utilisé seul ou intégré à une installation plus complexe. Les dispositifs utilisés seuls ou intégrés à un système doivent porter le marquage CE. Les systèmes ne doivent pas porter le marquage CE mais doivent être conformes aux conditions relatives à la protection de base de la directive CEM.

1.6.1.3 Directive machine

Les variateurs de fréquence sont classés comme composants électroniques conformément à la directive basse tension. Les variateurs de fréquence dotés d'une fonction de sécurité intégrée doivent toutefois être conformes à la directive sur les machines 2006/42/CE. Les variateurs de fréquence sans fonction de sécurité ne sont pas concernés par cette directive. Si un variateur de fréquence est intégré au système de machines, Danfoss précise les règles de sécurité applicables au variateur de fréquence.

La directive machine 2006/42/CE concerne les machines composées d'un ensemble de composants ou de dispositifs interconnectés dont au moins un est capable de mouvements mécaniques. La directive précise que la conception de l'équipement doit garantir la sécurité et la santé des personnes ainsi que celle du bétail et préserver le matériel si l'équipement est correctement installé, entretenu et utilisé conformément à l'usage prévu.

Lorsque les variateurs de fréquence sont utilisés sur des machines comportant au moins une pièce mobile, le fabricant de la machine doit fournir une déclaration précisant la conformité avec toutes les lois et mesures de sécurité applicables. Danfoss Les étiquettes CE sont conformes à la directive machine pour les variateurs de fréquence avec fonction de sécurité intégrée et fournit une déclaration de conformité à la demande.

1.6.2 Conformité UL

Homologué UL

Illustration 1.1 UL

AVIS!

Les variateurs de fréquence présentant une protection de type T7 (525-690 V) ne sont pas certifiés UL.

Le variateur de fréquence est conforme aux exigences de sauvegarde de la capacité thermique de la norme UL508C. Pour plus d'informations, se reporter au chapitre *Protection thermique du moteur* du *Manuel de configuration*.

1.6.3 Conformité C-Tick

1.6.4 Conformité marine

Pour la conformité à l'Accord européen relatif au transport international des marchandises dangereuses par voies de navigation intérieures (ADN), se reporter à chapitre 9.8.3 Installation selon les critères ADN.

1.7 Instruction de mise au rebut

Ne pas jeter d'équipement contenant des composants électriques avec les ordures ménagères.

Il doit être collecté séparément conformément à la législation locale en vigueur.

Tableau 1.3 Instruction de mise au rebut

1.8 Sécurité

Les variateurs de fréquence contiennent des composants haute tension et peuvent causer des blessures mortelles en cas de mauvaise manipulation. L'installation et l'exploitation de l'équipement ne doivent être effectuées que par des techniciens formés. Avant toute réparation, couper d'abord l'alimentation du variateur de fréquence et attendre le temps indiqué afin que l'énergie électrique stockée se dissipe.

Consulter le *Manuel d'utilisation* fourni avec l'appareil et disponible en ligne concernant :

- le temps de décharge et
- les consignes de sécurité et avertissements détaillés.

Il convient de respecter rigoureusement les précautions et consignes de sécurité pour garantir une exploitation sûre du variateur de fréquence.

2 Sécurité

2.1 Symboles de sécurité

Les symboles suivants sont utilisés dans ce document :

▲AVERTISSEMENT

Indique une situation potentiellement dangereuse qui peut entraîner des blessures graves ou le décès.

AATTENTION

Indique une situation potentiellement dangereuse qui peut entraîner des blessures superficielles à modérées. Ce signe peut aussi être utilisé pour mettre en garde contre des pratiques non sûres.

AVIS!

Indique des informations importantes, y compris des situations qui peuvent entraîner des dégâts matériels.

2.2 Personnel qualifié

Un transport, un stockage, une installation, une exploitation et une maintenance corrects et fiables sont nécessaires au fonctionnement en toute sécurité et sans problème du variateur de fréquence. Seul du personnel qualifié est autorisé à installer ou utiliser cet équipement.

Par définition, le personnel qualifié est un personnel formé, autorisé à installer, mettre en service et maintenir l'équipement, les systèmes et les circuits conformément aux lois et aux réglementations en vigueur. En outre, il doit être familiarisé avec les instructions et les mesures de sécurité décrites dans ce document.

2.3 Précautions de sécurité

AAVERTISSEMENT

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA. Le non-respect de cette instruction peut entraîner la mort ou des blessures graves.

 L'installation, le démarrage et la maintenance doivent être effectués uniquement par du personnel qualifié.

AAVERTISSEMENT

DÉMARRAGE IMPRÉVU

Lorsque le variateur de fréquence est relié au secteur, le moteur peut démarrer à tout moment, ce qui peut entraîner la mort, des blessures graves ou des dégâts matériels. Le moteur peut être démarré par un commutateur externe, un ordre du bus série, un signal de référence d'entrée, via le LCP ou après la suppression d'une condition de panne.

- Déconnecter le variateur de fréquence du secteur si la sécurité des personnes l'exige, afin d'éviter un démarrage imprévu du moteur.
- Appuyer sur [Off] sur le LCP, avant de programmer les paramètres.
- Le variateur de fréquence, le moteur et tous les équipements entraînés doivent être fonctionnels lorsque le variateur est raccordé au secteur.

AAVERTISSEMENT

TEMPS DE DÉCHARGE

Le variateur de fréquence contient des condensateurs dans le circuit intermédiaire qui peuvent rester chargés même lorsque le variateur de fréquence n'est plus alimenté. Le non-respect du temps d'attente spécifié après la mise hors tension avant un entretien ou une réparation peut entraîner le décès ou des blessures graves.

- 1. Arrêter le moteur.
- Déconnecter le secteur CA, tous les moteurs à aimant permanent et toutes les alimentations à distance du circuit CC y compris les batteries de secours, les alimentations sans interruption et les connexions du circuit CC aux autres variateurs de fréquence.
- Attendre que les condensateurs soient complètement déchargés avant de procéder à un entretien ou à une réparation. Le temps d'attente est indiqué dans le *Tableau 2.1*.

Tension [V]	Temps d'attente minimum (minutes)		
	4	7	15
200-240	0,25-3,7 kW		5,5-37 kW
380-500	0,25-7,5 kW		11-75 kW
525-600	0,75-7,5 kW		11-75 kW
525-690		1,5-7,5 kW	11-75 kW

Une haute tension peut être présente même lorsque les voyants d'avertissement sont éteints.

Tableau 2.1 Temps de décharge

AAVERTISSEMENT

RISQUE DE COURANT DE FUITE

Les courants de fuite à la terre dépassent 3,5 mA. Le fait de ne pas mettre le variateur de fréquence à la terre peut entraîner le décès ou des blessures graves.

 Veiller à la mise à la terre correcte de l'équipement par un installateur électrique certifié.

AAVERTISSEMENT

DANGERS LIÉS À L'ÉQUIPEMENT

Tout contact avec les arbres tournants et les matériels électriques peut entraîner des blessures graves voire mortelles.

- L'installation, le démarrage et la maintenance doivent être effectués par du personnel qualifié uniquement.
- Veiller à ce que tous les travaux électriques soient conformes aux réglementations électriques locales et nationales.
- Suivre les procédures décrites dans ce manuel.

AATTENTION

FONCTIONNEMENT EN MOULINET

La rotation imprévue des moteurs à magnétisation permanente expose à un risque de blessures et de dégâts matériels.

 Vérifier que les moteurs à magnétisation permanente sont bien bloqués afin d'empêcher toute rotation imprévue.

AATTENTION

DANGER POTENTIEL EN CAS DE PANNE INTERNE Risque de blessure si le variateur de fréquence n'est pas fermé correctement.

 Avant d'appliquer de la puissance, s'assurer que tous les caches de sécurité sont en place et fermement fixés.

3 Principes de fonctionnement de base

3.1 Généralités

Ce chapitre propose un aperçu des principaux assemblages et circuits du variateur de fréquence. Il vise à décrire les fonctions électriques internes et de traitement des signaux. Une description de la structure interne de contrôle est également incluse.

Sont également décrites les fonctions automatisées et optionnelles du variateur de fréquence pour la conception de systèmes d'exploitation robustes présentant des performances de contrôle sophistiquées et de rapports d'état.

3.2 Description du fonctionnement

Le variateur de fréquence fournit une quantité régulée de puissance CA à un moteur à induction triphasé pour contrôler la vitesse du moteur. Le variateur de fréquence fournit une fréquence et une tension variables au moteur.

Le variateur de fréquence est divisé en quatre modules principaux.

- Redresseur
- Circuit intermédiaire
- Onduleur
- Commande et régulation

Au *chapitre 3.3 Séquence de fonctionnement*, ces modules sont décrits dans le détail et indiquent comment les signaux de puissance et de commande se déplacent dans le variateur de fréquence.

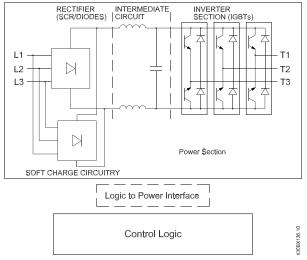


Illustration 3.1 Logique de commande interne

3.3 Séquence de fonctionnement

3.3.1 Section redresseur

Lorsqu'une puissance est appliquée pour la première fois au variateur de fréquence, elle entre via les bornes d'entrée (L1, L2, L3) et arrive au sectionneur et/ou à l'option de filtre RFI, selon la configuration de l'appareil.

3.3.2 Section intermédiaire

Après la section du redresseur, la tension passe dans la section intermédiaire. Cette tension redressée est lissée par un circuit de filtre sinus composé de la bobine d'induction et de la batterie de condensateurs du bus CC.

La bobine d'induction du bus CC fournit une impédance série au courant changeant. Ceci participe au processus de filtrage tout en réduisant la distorsion harmonique sur la forme d'onde du courant CA d'entrée normalement inhérente aux circuits redresseurs.

3.3.3 Section d'onduleur

Dès qu'un ordre de fonctionnement et la référence de vitesse sont présents, les IGBT commencent à commuter pour créer la forme d'onde de la sortie. Cette forme d'onde, telle que générée par le principe PWM VVC^{plus}Danfoss de la carte de commande, offre des performances optimales et des pertes minimales dans le moteur.

3.3.4 Option de freinage

Pour les variateurs de fréquence équipés de l'option de freinage dynamique, un IGBT de freinage, avec les bornes 81(R-) et 82(R+), est inclus pour la connexion d'une résistance de freinage externe.

La fonction de l'IGBT de freinage consiste à limiter la tension du circuit intermédiaire, chaque fois que la limite de tension maximale est dépassée. Pour ce faire, l'IGBT commute la résistance montée en externe, au niveau du bus CC, pour supprimer la tension CC excessive présente dans les condensateurs du bus. La tension excessive du bus CC est généralement le résultat d'une charge trop importante provoquant une énergie renouvelable qui retourne vers le bus CC. Cela survient par exemple lorsque la charge entraîne le moteur, ce qui fait revenir la tension vers le circuit du bus CC.

L'installation externe de la résistance de freinage présente les avantages suivants : choix de la résistance en fonction des besoins de l'application, dissipation de l'énergie hors du panneau de commande et protection du variateur de fréquence contre les surchauffes si la résistance de freinage est en surcharge.

Le signal de gâchette de l'IGBT de freinage émane de la carte de commande et est transmis à l'IGBT de freinage via la carte de puissance et la carte de commande de gâchette. De plus, les cartes de puissance et de commande surveillent la connexion de l'IGBT de freinage et de la résistance de freinage pour éviter les éventuels courts-circuits ou surcharges.

3.3.5 Répartition de la charge

Les unités avec option de répartition de la charge intégrée comportent les bornes 89 (+) CC et 88 (-) CC. Dans le variateur de fréquence, ces bornes sont raccordées au bus CC devant la bobine de réactance du circuit intermédiaire et les condensateurs du bus.

L'utilisation des bornes de répartition de la charge repose sur deux configurations différentes.

Dans la première méthode, les bornes sont utilisées pour relier les circuits de bus CC de plusieurs variateurs de fréquence entre eux. Cela permet à une unité en mode régénératif de partager sa tension du bus excessive avec un autre variateur de fréquence en mode entraînement moteur. La répartition de la charge peut ainsi réduire la nécessité de résistances de freinage dynamique externes, tout en économisant de l'énergie. En théorie, le nombre d'unités pouvant être raccordées de cette façon est infini. Elles doivent toutefois toutes présenter la même tension nominale. En outre, selon la taille et le nombre d'unités, il peut s'avérer nécessaire d'installer des bobines de réactance CC et des fusibles CC dans les connexions du circuit intermédiaire et des bobines de réactance CA sur le secteur. Une telle configuration requiert des considérations spécifiques et ne doit pas être essayée sans consultation préalable de Danfoss Application Engineering.

Dans la seconde méthode, le variateur de fréquence est alimenté exclusivement par une source CC. Cette solution est un peu plus compliquée. D'abord, une source CC est nécessaire. Ensuite, un moyen d'abaisser la tension dans le bus CC à la mise sous tension doit aussi être prévu. Enfin, une source de tension secteur est indispensable pour alimenter les ventilateurs de l'unité. Là encore, une telle configuration ne doit pas être mise en place sans consultation préalable de Danfoss Application Engineering.

3.4 Interface de commande

3.4.1 Principe de contrôle

Le variateur de fréquence reçoit une entrée de commande de plusieurs sources.

- Panneau de commande local (mode Hand)
- Bornes de commande analogiques, digitales et analogiques/digitales programmables (mode Auto)
- Ports de communication RS-485, USB ou série (mode Auto)

Lorsqu'elles sont câblées et correctement programmées, les bornes de commande fournissent un retour, une référence et d'autres signaux d'entrées au variateur de fréquence, l'état de sortie et les conditions de défauts depuis le variateur de fréquence, des relais à l'équipement auxiliaire et une interface de communication série. Une 24 V commune est également fournie. Les bornes de commande sont programmables pour plusieurs fonctions en sélectionnant des options de paramètres via le panneau de commande local (LCP) à l'avant de l'unité ou de sources externes. La plupart des câbles de commande sont fournis par le client, sauf si une commande a été passée en usine.

3.5 Schéma de câblage

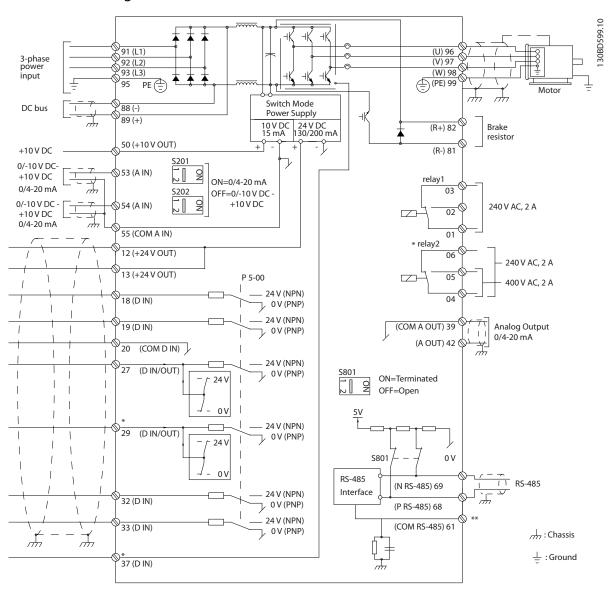
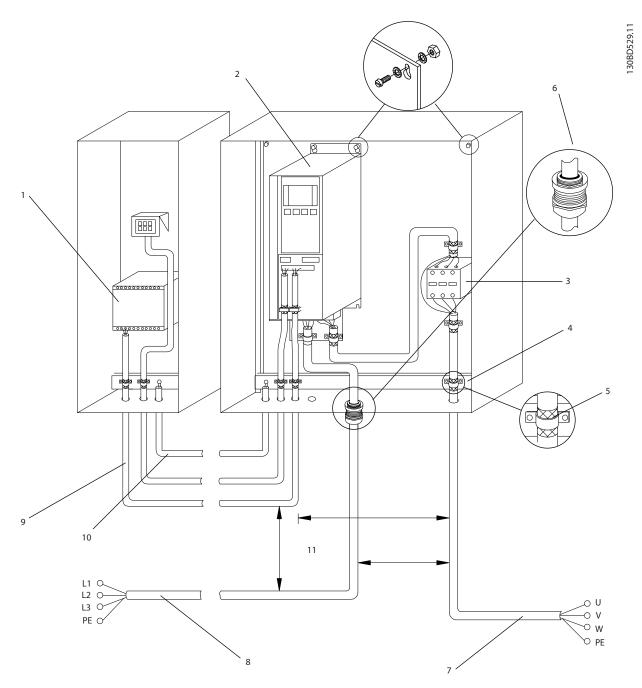



Illustration 3.2 Schéma de câblage de base

A = analogique, D = digitale

*La borne 37 (en option) est utilisée pour l'Absence sûre du couple. Pour les instructions d'installation de l'Absence sûre du couple, se reporter au *Manuel d'utilisation de l'Absence sûre du couple des variateurs de fréquence* Danfoss *VLT®*. La borne 37 n'est pas incluse dans le FC 301 (sauf type de protection A1). Le relais 2 et la borne 29 n'ont aucune fonction sur le FC 301. **Ne pas connecter le blindage.

1	PLC	7	Moteur, triphasé avec terre de protection (blindé)
2	Variateur de fréquence	8	Secteur, triphasé et terre de protection renforcée (non blindé)
3	Contacteur de sortie	9	Câblage de commande (blindé)
4	Étrier de serrage	10	Égalisation de potentiel, 16 mm² min. (0,025 po)
5	Isolation de câble (dénudé)	11	Espace entre le câble de commande, le câble moteur et le câble
6	Presse-étoupe]	secteur :200 mm min.

Illustration 3.3 Raccordement-électrique conforme CEM

Pour plus d'informations sur la CEM, voir le *chapitre 4.1.15 Conformité CEM*.

AVIS!

INTERFÉRENCES CEM

Utiliser des câbles blindés pour le câblage de commande et du moteur, et des câbles séparés pour le câblage de commande, d'alimentation et du moteur. Toute mauvaise isolation des câblages de l'alimentation, du moteur et de commande risque de provoquer une baisse de la performance ou un comportement inattendu. Au moins 200 mm (7,9 po) d'espace entre les câbles d'alimentation, du moteur et de commande sont nécessaires.

3.6 Contrôles

3.6.1 Principe de contrôle

Un variateur de fréquence redresse la tension CA du secteur en tension CC, laquelle est ensuite convertie en courant CA avec une amplitude et une fréquence variables.

La tension/le courant et la fréquence variables qui alimentent le moteur offrent des possibilités de régulation de vitesse variable pour les moteurs standard triphasés et les moteurs à aimant permanent.

Le variateur de fréquence peut contrôler la vitesse ou le couple sur l'arbre moteur. Le réglage du par. 1-00 Mode Config. détermine le type de contrôle.

Commande de vitesse

Il en existe deux types:

- Contrôle en boucle ouverte qui ne nécessite pas de signal de retour du moteur (sans capteur).
- Le régulateur PID en boucle fermée nécessite un signal de retour de vitesse vers une entrée. Une commande de la vitesse en boucle fermée correctement optimisée est plus précise qu'une commande en boucle ouverte.

Sélectionne l'entrée à utiliser comme signal de retour du PID de vitesse au par. 7-00 PID vit.source ret.

Commande de couple

La fonction de commande de couple est utilisée dans les applications où le couple sur l'arbre de sortie du moteur contrôle l'application, pour contrôler la tension par exemple. La commande de couple est sélectionnée au par. 1-00 Mode Config., soit en boucle ouverte VVC^{plus} [4] Boucl.ouverte couple ou en boucle fermée contrôle de flux avec [2] Retour de vitesse du moteur. Le réglage du couple s'effectue en ajustant une référence analogique, digitale ou contrôlée par bus. Le facteur de limite de vitesse max. est défini au par. 4-21 Source facteur vitesse limite. En cas d'utilisation de la commande de couple, il est recommandé de réaliser une procédure d'AMA complète car les données correctes du moteur sont cruciales pour une performance optimale.

- La boucle fermée en mode flux avec le retour codeur offre de meilleures performances dans les quatre quadrants et à toutes les vitesses du moteur.
- Boucle ouverte en mode VVC^{plus}. Cette fonction est utilisée dans des applications mécaniques robustes mais la précision est limitée. La fonction de couple en boucle ouverte fonctionne dans une seule direction de vitesse. Le couple est calculé sur la base de la mesure de courant interne du variateur de fréquence.

Référence vitesse/couple

La référence pour ces contrôles peut être soit une référence unique soit la somme de plusieurs références, y compris celles mises à l'échelle de manière relative. L'utilisation des références est détaillée dans le chapitre chapitre 3.7 Utilisation des références.

3.6.2 FC 301 vs. FC 302 Principe de fonctionnement

Le FC 301 est un variateur de fréquence à usage général destiné aux applications à vitesse variable. Son principe de fonctionnement repose sur la commande vectorielle de tension (VVC^{plus}). Le

FC 301 peut gérer des moteurs asynchrones et PM.

Le principe de détection du courant dans le FC 301 repose sur la mesure du courant dans le circuit intermédiaire ou la phase moteur. La protection contre tout défaut de mise à la terre côté moteur est résolue par un circuit de désaturation dans les IGBT raccordés à la carte de commande.

Le comportement relatif aux courts-circuits sur le FC 301 dépend du transformateur de courant dans le circuit intermédiaire positif et de la protection de désaturation avec signal de retour des trois IGBT inférieurs et du frein.

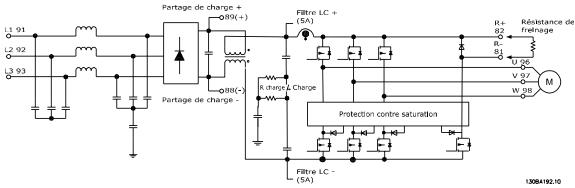


Illustration 3.4 Principe de fonctionnement FC 301

Le FC 302 est un variateur de fréquence haute performance destiné aux applications exigeantes. Le variateur de fréquence peut gérer divers types de principes de fonctionnement de moteur, tels que le mode spécial U/f, VVC^{plus} ou le vecteur de flux. Le

FC 302 peut prendre en charge des moteurs synchrones à aimant permanent (servomoteurs sans balais) ainsi que des moteurs asynchrones normaux à cage.

Le comportement relatif aux courts-circuits sur le FC 302 dépend des trois transformateurs de courant dans les phases moteur et de la protection de désaturation avec signal de retour du frein.

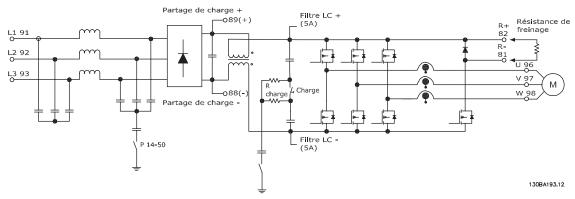


Illustration 3.5 Principe de fonctionnement FC 302

3.6.3 Structure de contrôle dans VVC^{plus}

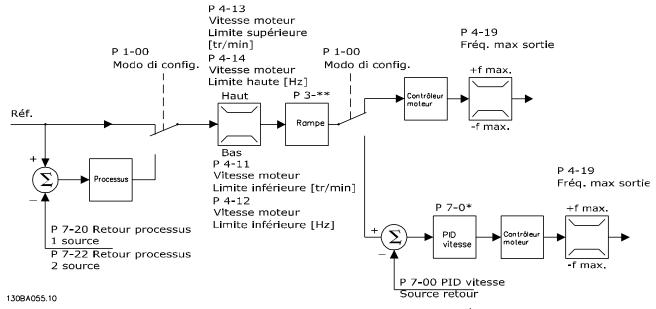


Illustration 3.6 Structure de contrôle dans les configurations en boucles ouverte et fermée VVC^{plus}

Consulter les *Paramètres actifs/inactifs dans les modes de contrôle des différents onduleurs* du *Guide de programmation* pour obtenir un aperçu de la configuration de contrôle disponible, selon le choix d'un moteur CA ou d'un moteur PM non saillant. Dans la configuration présentée sur l'*Illustration 3.6*, le par. *1-01 Principe Contrôle Moteur* est réglé sur [1] *VVCplus* et le par. *1-00 Mode Config.* sur [0] *Boucle ouverte vit.* La référence résultant du système de gestion des références est reçue et soumise à la limite de rampe et de vitesse avant d'être transmise au contrôle du moteur. La sortie du contrôle du moteur est alors limitée par la limite maximum de fréquence.

Si le par. 1-00 Mode Config. est réglé sur [1] Boucle fermée vit., la référence résultante passe de la limite de rampe et de vitesse à un régulateur PID de vitesse. Les paramètres du régulateur PID de vitesse se trouvent dans le groupe de paramètres 7-0* PID vit.régul. La référence résultant du régulateur PID de vitesse est transmise au contrôle du moteur soumis à la limite de fréquence.

Sélectionner [3] Process au par. 1-00 Mode Config. afin d'utiliser le régulateur PID de process pour le contrôle en boucle fermée, de la vitesse ou de la pression par exemple, dans l'application contrôlée. Les paramètres du process PID se trouvent dans les groupes de paramètres 7-2* PIDproc/ctrl retour et7-3* PID proc./Régul.

3.6.4 Structure de contrôle flux sans capteur (FC 302 seulement)

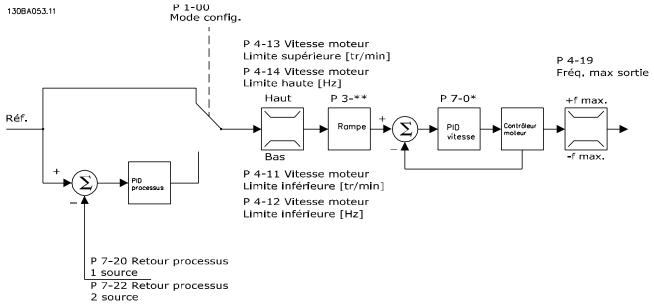


Illustration 3.7 Structure de contrôle dans les configurations boucles ouverte et fermée flux sans capteur

Consulter les *Paramètres actifs/inactifs dans les modes de contrôle des différents onduleurs* du *Guide de programmation* pour obtenir un aperçu de la configuration de contrôle disponible, selon le choix d'un moteur CA ou d'un moteur PM non saillant. Dans la configuration illustrée, le par. *1-01 Principe Contrôle Moteur* est réglé sur [2] Flux ss capteur et le par. *1-00 Mode Config.* sur [0] Boucle ouverte vit. La référence résultant du système de gestion des références est soumise aux limites de rampe et de vitesse telles que déterminées par les réglages des paramètres indiqués.

Un signal de retour de la vitesse estimée est généré à destination du PID de vitesse afin de contrôler la fréquence de sortie. Le PID de vitesse doit être défini avec ses paramètres P, I et D (groupe de paramètres 7-0* Régulateur PID de vitesse).

Sélectionner [3] Process au par. 1-00 Mode Config. afin d'utiliser le régulateur PID de process pour le contrôle en boucle fermée, de la vitesse ou de la pression par exemple, dans l'application contrôlée. Les paramètres du process PID se trouvent dans les groupes de paramètres 7-2* PIDproc/ et7-3* PID proc./Régul.

3.6.5 Structure de contrôle en flux avec signal de retour du moteur (FC 302 seulement)

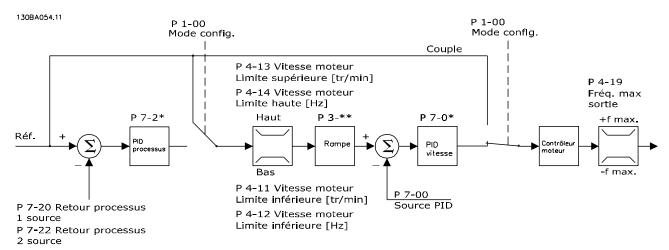


Illustration 3.8 Structure de contrôle dans la configuration Flux avec signal de retour du moteur (uniquement disponible dans le FC 302):

Consulter les *Paramètres actifs/inactifs dans les modes de contrôle des différents onduleurs* du *Guide de programmation* pour obtenir un aperçu de la configuration de contrôle disponible, selon le choix d'un moteur CA ou d'un moteur PM non saillant. Dans la configuration illustrée, le par. 1-01 Principe Contrôle Moteur est réglé sur [3] Flux retour moteur et le par. 1-00 Mode Config. sur [1] Boucle fermée vit.

Dans cette configuration, le contrôle du moteur repose sur un signal de retour d'un codeur ou un résolveur monté directement sur le moteur (défini au par. 1-02 Source codeur arbre moteur).

Sélectionner [1] Boucle fermée vit. au par. 1-00 Mode Config. afin d'utiliser la référence résultante comme entrée du régulateur PID de vitesse. Les paramètres du régulateur PID de vitesse se trouvent dans le groupe de paramètres 7-0* Régulateur PID de vitesse.

Sélectionner [2] Couple au par. 1-00 Mode Config. pour utiliser la référence résultante directement comme une référence de couple. La commande de couple peut être sélectionnée uniquement dans la configuration Flux avec signal de retour du moteur (1-01 Principe Contrôle Moteur). Lorsque ce mode est sélectionné, l'unité de référence est le Nm. Il ne nécessite aucun retour concernant le couple réel puisque celui-ci est calculé sur la base de la mesure de courant du variateur de fréquence.

Sélectionner [3] Process au par. 1-00 Mode Config. afin d'utiliser le régulateur PID de process pour le contrôle en boucle fermée, de la vitesse ou d'une variable de process par exemple, dans l'application contrôlée.

3.6.6 PID

3.6.6.1 Régulateur PID de vitesse

Le régulateur PID maintient une vitesse de moteur constante indépendamment des variations de charge sur le moteur.

	1-01 Principe Contrôle Moteur				
1-00 Mode Config.	U/f	Contrôle vectoriel avancéVVC ^{plus}	Flux ss capteur	Flux retour moteur	
[0] Boucle ouverte vit.	ACTIF	ACTIF	ACTIF	N.A.	
[1] Boucle fermée vit.	N.A.	Inactif	N.A.	ACTIF	
[2] Couple	N.A.	N.A.	N.A.	Inactif	
[3] Process	Inactif	Inactif	Inactif	N.A.	
[4] Boucl.ouverte couple	N.A.	Inactif	N.A.	N.A.	
[5] Modulation (Wobble)	Inactif	Inactif	Inactif	Inactif	
[6] Bobin. enroul. surface	Inactif	Inactif	Inactif	N.A.	
[7] Boucl.ouv. vit. PID ét.	Inactif	Inactif	Inactif	N.A.	
[8] Boucl.ferm.vit.PID ét.	N.A.	Inactif	N.A.	Inactif	

Tableau 3.1 Configurations de contrôle avec commande de vitesse active

AVIS!

Le régulateur PID de vitesse fonctionne avec la valeur de paramètre par défaut, mais le réglage précis des paramètres est fortement recommandé afin d'optimiser les performances de commande du moteur. Il est tout particulièrement recommandé de régler correctement les deux principes de contrôle du moteur de flux si l'on souhaite obtenir un rendement optimal.

Tableau 3.2 résume les caractéristiques éventuellement configurables pour le contrôle de la vitesse. Voir le Guide de programmation du VLT® AutomationDrive FC 301/FC 302 pour plus de précisions sur la programmation.

Paramètre	Description de la fonction
7-00 PID vit.source ret.	Sélectionner l'entrée qui fournit le signal de retour au régulateur PID de vitesse.
7-02 PID vit.gain P	Plus la valeur est élevée, plus le contrôle est rapide. Cependant, une valeur trop élevée peut entraîner
	des oscillations.
7-03 PID vit.tps intég.	Élimine l'erreur de vitesse en état stable. Une valeur faible entraîne une réaction rapide. Cependant,
7-03 FID VIC.tps litteg.	une valeur trop faible peut entraîner des oscillations.
7-04 PID vit.tps diff.	Fournit un gain proportionnel à la vitesse de modification du signal de retour. Le réglage de ce
	paramètre sur 0 désactive le différenciateur.
	Dans le cas d'une application, pour laquelle la référence ou le retour change très vite, d'où un
	changement rapide de l'erreur, le différenciateur peut rapidement devenir trop dominant. Cela
7-05 PID vit.limit gain D	provient du fait qu'il réagit aux changements au niveau de l'écart. Plus l'écart change rapidement, plus
7-03 FID VIC.IIIIIIC GAIN D	le gain différentiel est important. Il est donc possible de limiter le gain différentiel de manière à
	pouvoir régler un temps de dérivée raisonnable en cas de modifications lentes et un gain raisonna-
	blement rapide en cas de modifications rapides.

[«] N.A. » signifie que le mode spécifique n'est absolument pas disponible. « Inactif » signifie que le mode spécifique est disponible, mais que la commande de vitesse n'est pas active dans ce mode.

Danfoss

Paramètre	Description de la fonction			
	Un filtre passe-bas atténue les oscillations du signal de retour et améliore la stabilité de l'état. Un			
	temps de filtre trop important risque cependant de détériorer la performance dynamique du			
	régulateur PID de vitesse.			
	Réglages pratiques du paramètre 7-06 pris selon le nombre d'impulsions par tour depuis le codeur			
T OC DID 111 CH	(PPR):			
7-06 PID vit.tps filtre	Codeur PPR	7-06 PID vit.tps filtre		
	512	10 ms		
	1024	5 ms		
	2048	2 ms		
	4096	1 ms		
7-07 Rapport démultiplic. ret.PID	Le variateur de fréquence multiplie le retour vitesse par ce rapport.			
vit.				
7-08 Facteur d'anticipation PID	Le signal de référence contourne le contrôleur de vitesse de la valeur spécifiée. Cette fonction			
vitesse	augmente la performance dynamique de la boucle de contrôle de la vitesse.			
7-09 Speed PID Error Correction	L'erreur de vitesse entre la rampe et la vitesse réelle est comparée au réglage de ce paramètre. Si elle			
w/ Ramp	dépasse la valeur de ce paramètre, elle est corrigée via la rampe de manière contrôlée.			

Tableau 3.2 Paramètres pertinents en matière de contrôle de vitesse

Programmer dans l'ordre indiqué (voir le détail des réglages dans le Guide de programmation).

Le Tableau 3.3 suppose que tous les autres paramètres et commutateurs conservent leur réglage par défaut.

Fonction	Paramètre	Réglage
1) Veiller à ce que le moteur fonctionne correctement. Pro	océder comme suit :	
Régler les paramètres du moteur conformément aux	1-2*	Tel que spécifié par la plaque signalétique du moteur
données de la plaque signalétique		
Exécuter une adaptation automatique du moteur	1-29 Adaptation	[1] Exécuter un AMA complet
	auto. au moteur	
	(AMA)	
2) Vérifier que le moteur fonctionne et que le codeur est	correctement raccord	dé. Procéder comme suit :
Appuyer sur la touche [Hand On] du LCP. Vérifier que le		Définir une référence positive.
moteur fonctionne et noter son sens de rotation (qui		
sera donc le « sens positif »).		
Aller au par. 16-20 Angle moteur. Faire doucement	16-20 Angle	N.A. (paramètre en lecture seule) Remarque : une valeur
tourner le moteur dans le sens positif. La rotation doit	moteur	croissante repart à 0 lorsqu'elle atteint 65535.
être aussi lente que possible (seulement quelques tours		
par minute) de manière à pouvoir déterminer si la valeur		
au par. 16-20 Angle moteur augmente ou diminue.		
Si le par. 16-20 Angle moteur décroît, modifier le sens de	5-71 Sens	[1] Sens antihoraire (si le par. 16-20 Angle moteur décroît)
rotation du codeur au par. 5-71 Sens cod.born.32 33.	cod.born.32 33	
3) Veiller à ce que les limites du variateur soient réglées s	ur des valeurs sûres.	
Définir des limites acceptables pour les références.	3-02 Référence	0 tr/min (par défaut)
	minimale	1 500 tr/min (défaut)
	3-03 Réf. max.	
Vérifier que les réglages des rampes correspondent aux	3-41 Temps	réglage par défaut
capacités du variateur et aux spécifications de fonction-	d'accél. rampe 1	réglage par défaut
nement autorisées de l'application.	3-42 Temps décél.	
	rampe 1	

Fonction	Paramètre	Réglage	
Définir des limites acceptables pour la vitesse et la	4-11 Vit. mot.,	0 tr/min (par défaut)	
fréquence du moteur.	limite infér. [tr/	1 500 tr/min (par défaut)	
	min]	60 Hz (valeur par défaut 132 Hz)	
	4-13 Vit.mot.,		
	limite supér. [tr/		
	min]		
	4-19 Frq.sort.lim.ht		
	е		
4) Configurer la commande de vitesse et sélectionner le p	rincipe de contrôle d	lu moteur	
Activation de la commande de vitesse	1-00 Mode Config.	[1] Boucle fermée vit.	
Sélection du principe de contrôle du moteur	1-01 Principe	[3] Flux retour moteur	
	Contrôle Moteur		
5) Configurer la référence et la mettre à l'échelle par rapp	ort à la commande d	le vitesse	
Définir l'entrée ANA 53 comme source de référence	3-15 Ress.? Réf. 1	Inutile (par défaut)	
Régler l'entrée ANA 53 0 tr/min (0 V) sur 1 500 tr/min	6-1*	Inutile (par défaut)	
(10 V)			
6) Configurer le signal du codeur 24 V HTL comme signal	de retour pour le co	ntrôle du moteur et de la vitesse	
Définir les entrées digitales 32 et 33 comme entrées du	5-14 E.digit.born.32	[0] Inactif (par défaut)	
codeur HTL	5-15 E.digit.born.33		
Choisir la borne 32/33 comme signal de retour du	1-02 Source	Inutile (par défaut)	
moteur	codeur arbre		
	moteur		
Choisir la borne 32/33 comme signal de retour du PID	7-00 PID vit.source	Inutile (par défaut)	
de vitesse	ret.		
7) Régler les paramètres du régulateur PID de vitesse			
Consulter si nécessaire les consignes de réglage ou	7-0*	Voir les consignes	
procéder au réglage manuel			
8) Enregistrer pour terminer			
Enregistrer le réglage des paramètres sur le LCP afin de	0-50 Copie LCP	[1] Lect.par.LCP	
les conserver			

Tableau 3.3 Ordre de programmation

3.6.6.2 Réglage du régulateur PID de vitesse

Les consignes de réglage suivantes sont pertinentes lorsque l'on utilise l'un des principes de contrôle du moteur avec flux dans les applications où la charge est principalement inerte (faible quantité de frottement).

La valeur du 30-83 PID vit.gain P dépend de l'inertie combinée du moteur et de la charge ; la largeur de bande sélectionnée peut être calculée à l'aide de la formule suivante :

$$Par.. 7-02 = \frac{Inertie\ totale\ \left[kgm^2\right]\ x\ par..\ 1-25}{Par..\ 1-20\ x\ 9550}\ x\ Largeur\ de\ bande\ \left[rad\ /\ s\right]$$

AVIS!

Le par. 1-20 Puissance moteur [kW] correspond à la puissance du moteur exprimée en [kW] (c.-à-d. saisir 4 kW au lieu de 4 000 W dans la formule).

20 rad/s est une valeur pratique pour la largeur de bande. Vérifier le résultat du calcul du 7-02 PID vit.gain P par rapport à la formule suivante (inutile si l'on utilise un signal de retour haute résolution tel que SinCos) :

Par..
$$7 - 02 MAX = \frac{0.01 \times 4 \times Résolution codeur \times Par.. 7 - 06}{2 \times \pi} \times \frac{1}{100}$$

Ondulation de couple max. [%]

5 ms est la valeur de départ recommandée pour le 7-06 PID vit.tps filtre (une résolution de codeur plus faible nécessite une valeur de filtre plus élevée). Une ondulation de couple max. de 3 % est généralement acceptable. Pour les codeurs incrémentaux, la résolution se trouve soit au par. 5-70 Pts/tr cod.born.32 33 (24 V HTL sur variateur de fréquence standard), soit au par. 17-11 Résolution (PPR) (5 V TTL sur option d'encodeur MCB 102).

Généralement, la limite pratique maximale du par. 7-02 PID vit.gain P est déterminée par la résolution du codeur et le temps de filtre du signal de retour, mais d'autres facteurs de l'application peuvent restreindre le par. 7-02 PID vit.gain P à une valeur plus faible.

Pour atténuer le dépassement, le par. 7-03 PID vit.tps intég. peut être réglé sur 2,5 s environ (varie selon l'application).

Le par. 7-04 PID vit.tps diff. doit être réglé sur 0 jusqu'à ce que tout le reste soit réglé. Le cas échéant, pour terminer le réglage, augmenter cette valeur par petits incréments.

3.6.6.3 Régulateur PID de process

Utiliser le régulateur PID de process pour contrôler les paramètres de l'application mesurés par un capteur (c.-à-d. pression, température, débit) et affectés par le moteur raccordé par l'intermédiaire d'une pompe, d'un ventilateur ou un autre dispositif.

Le *Tableau 3.4* répertorie les configurations où le contrôle de process est possible. Lorsqu'un principe de contrôle du moteur à vecteur de flux est utilisé, veiller également à régler les paramètres du régulateur PID de vitesse. Se reporter au *chapitre 3.6 Contrôles* pour l'activation de la commande de vitesse.

1-00 Mode Config.	1-01 Principe Contrôle Moteur			
	U/f Contrôle vectoriel Flux ss capteur Flux retour moteur			
		avancé VVC plus		
[3] Process	Inactif	Process	Process & vitesse	Process & vitesse

Tableau 3.4 Configurations de contrôle avec contrôle de process

AVIS!

Le régulateur PID de process fonctionne avec la valeur de paramètre par défaut mais le réglage précis des paramètres est fortement recommandé afin d'optimiser le rendement du contrôle de l'application. Les deux principes de contrôle du moteur avec flux dépendent largement, pour pouvoir atteindre leur rendement optimal, du réglage approprié du régulateur PID de vitesse (avant même le réglage du régulateur PID de process).

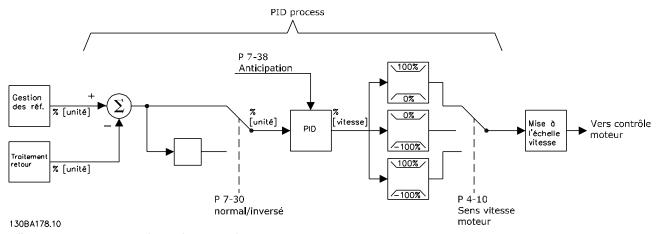


Illustration 3.9 Diagramme du régulateur PID de process

Le *Tableau 3.5* résume les caractéristiques qui peuvent être configurées pour le contrôle de process.

Paramètre	Description de la fonction
7-20 PID proc./1 retour	Sélectionner la source (cà-d. entrée analogique ou impulsions) qui fournit le signal
	de retour au régulateur PID de process.
7-22 PID proc./2 retours	En option : déterminer si le régulateur PID de process doit obtenir un signal de
	retour supplémentaire (et en spécifier la source). Si une source de retour supplé-
	mentaire est sélectionnée, les deux signaux de retour sont ajoutés avant d'être
	utilisés dans le régulateur PID de process.
7-30 PID proc./Norm.lnv.	Sous [0] Normal, le contrôle de process répond par une augmentation de la vitesse
	du moteur si le signal de retour passe en dessous de la référence. Dans la même
	situation, mais sous [1] Inverse, le contrôle de process répond par une vitesse
	décroissante.
7-31 PID proc./Anti satur.	La fonction anti-saturation implique l'initialisation de l'intégrateur à une fréquence
	correspondant à la fréquence de sortie actuelle lorsqu'une limite de fréquence ou
	de couple est atteinte. Cela empêche l'intégration d'un écart qui ne peut, en aucun
	cas, être compensé par un changement de vitesse. Pour désactiver cette fonction,
	sélectionner [0] Inactif.
7-32 PID proc./Fréq.dém.	Dans certaines applications, un temps très long s'écoule avant d'atteindre la vitesse/
	point de consigne requis. Dans ces applications, régler la vitesse fixe du moteur sur
	le variateur de fréquence avant d'activer le régulateur de process peut présenter un
	avantage. Pour cela, régler une valeur de démarrage du process PID (vitesse) au par.
	7-32 PID proc./Fréq.dém.
7-33 PID proc./Gain P	Plus la valeur est élevée, plus le contrôle est rapide. Cependant, une valeur trop
	élevée peut entraîner des oscillations.
7-34 PID proc./Tps intégral.	Élimine l'erreur de vitesse en état stable. Une valeur faible entraîne une réaction
	rapide. Cependant, une valeur trop faible peut entraîner des oscillations.
7-35 PID proc./Tps diff.	Fournit un gain proportionnel à la vitesse de modification du signal de retour. Le
	réglage de ce paramètre sur 0 désactive le différenciateur.
7-36 PID proc./ Limit.gain D.	Dans le cas d'une application, pour laquelle la référence ou le retour change très
	vite, d'où un changement rapide de l'erreur, le différenciateur peut rapidement
	devenir trop dominant. Cela provient du fait qu'il réagit aux changements au niveau
	de l'écart. Plus l'écart change rapidement, plus le gain différentiel est important. Il
	est donc possible de limiter le gain différentiel de manière à pouvoir régler un
	temps de dérivée raisonnable en cas de modifications lentes.
7-38 Facteur d'anticipation PID process	Pour les applications dans lesquelles il existe une corrélation acceptable (et
	quasiment linéaire) entre la référence de process et la vitesse du moteur nécessaire
	à l'obtention de cette référence, le facteur d'anticipation peut servir à obtenir une
	meilleure performance dynamique du régulateur PID de process.
5-54 Tps filtre pulses/29 (borne impulsions 29),	En cas d'oscillation du signal de retour de courant/tension, il est possible d'amortir
5-59 Tps filtre pulses/33 (borne impulsions 33),	ces oscillations au moyen d'un filtre de retour. Cette constante de temps est
6-16 Const.tps.fil.born.53 (borne analogique 53),	l'expression de la limite de vitesse des ondulations présentes sur le signal de retour.
6-26 Const.tps.fil.born.54 (borne analogique 54)	Exemple : si le filtre passe-bas a été réglé sur 0,1 s, la limite de vitesse est de 10
6-36 Constante tps filtre borne X30/11	rad/s (réciproque de 0,1 s), ce qui correspond à $(10/(2 \times \pi)) = 1,6$ Hz. Cela signifie
6-46 Constante tps filtre borne X30/12	que tous les courants/tensions déviant de plus de 1,6 oscillations par seconde sont
35-46 Term. X48/2 Filter Time Constant	atténués par le filtre. La commande ne porte que sur un signal de retour dont la
	fréquence (vitesse) varie de moins de 1,6 Hz.
	Le filtre passe-bas améliore la stabilité de l'état mais la sélection d'un temps de filtre
	trop important détériore la performance dynamique du régulateur PID de process.

Tableau 3.5 Paramètres pertinents du contrôle de process

3.6.6.4 Régulateur PID avancé

Consulter le *Guide de Programmation* des *VLT® AutomationDrive FC 301/FC 302* pour les paramètres du régulateur PID avancé

3.6.7 Contrôle de courant interne en mode VVC^{plus}

Lorsque le couple/courant moteur dépasse les limites de couple définies aux par. 4-16 Mode moteur limite couple, 4-17 Mode générateur limite couple et 4-18 Limite courant, le contrôle de limite de courant intégral est activé. Si le variateur de fréquence est en limite de courant en mode moteur ou en mode régénérateur, il tente de descendre le plus rapidement possible en dessous des limites de couple réglées sans perdre le contrôle du moteur.

3.6.8 Contrôle local (Hand On) et distant (Auto On)

Le variateur de fréquence peut être actionné manuellement via le panneau de commande locale (LCP) ou à distance via les entrées analogiques et digitales et le bus série. Si l'autorisation est donnée aux par. 0-40 Touche [Hand on] sur LCP, 0-41 Touche [Off] sur LCP, 0-42 Touche [Auto on] sur LCP et 0-43 Touche [Reset] sur LCP, il est possible de démarrer et d'arrêter le variateur de fréquence via le LCP à l'aide des touches [Hand On] et [Off]. Les alarmes peuvent être réinitialisées via la touche [Reset]. Après avoir appuyé sur la touche [Hand On], le variateur de fréquence passe en mode Hand (manuel) et suit (par défaut) la référence locale définie à l'aide des touches fléchées du LCP.

Après avoir appuyé sur la touche [Auto On], le variateur de fréquence passe en mode Auto et suit (par défaut) la référence distante. Dans ce mode, il est possible de contrôler le variateur via les entrées digitales et diverses interfaces série (RS-485, USB ou un bus de terrain en option). Consulter les informations complémentaires concernant le démarrage, l'arrêt, les rampes variables et les configurations de paramètres, etc. dans le groupe de paramètres 5-1* Entrées digitales ou 8-5* Communication série.

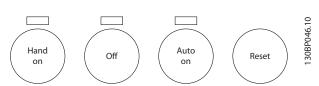


Illustration 3.10 Touches d'exploitation

Référence active et mode de configuration

La référence active peut correspondre à la référence locale ou distante.

Au par. 3-13 Type référence, la référence locale peut être sélectionnée en permanence en sélectionnant [2] Local. Pour sélectionner en permanence la référence distante, régler sur [1] A distance. En réglant sur [0] Mode hand/auto (par défaut), l'emplacement de la référence dépend du mode activé (mode Hand ou mode Auto).

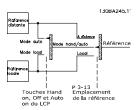


Illustration 3.11 Référence active

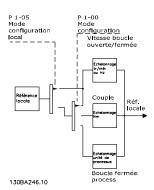


Illustration 3.12 Mode Config.

Touches [Hand On]	3-13 Type	Référence active
[Auto on]	référence	
Hand	Mode hand/auto	Local
Hand ⇒ Off	Mode hand/auto	Local
Auto	Mode hand/auto	A distance
Auto ⇒ Off	Mode hand/auto	A distance
Toutes les touches	Local	Local
Toutes les touches	A distance	A distance

Tableau 3.6 Conditions d'activation des références locales/distantes

Le par. 1-00 Mode Config. détermine le type de principe de fonctionnement de l'application (à savoir le contrôle de vitesse, le couple ou le process) utilisé lorsque la référence distante est active. Le par. 1-05 Configuration mode Local détermine le type de principe de fonctionnement de l'application utilisé lorsque la référence locale est active. L'une d'elles est toujours active, mais les deux ne peuvent pas l'être en même temps.

3.7 Utilisation des références

3.7.1 Références

Référence analogique

Signal analogique appliqué à l'entrée 53 ou 54. Le signal peut être une tension 0-10 V (FC 301 et FC 302) ou -10 à +10 V (FC 302). Signal de courant 0-20 mA ou 4-20 mA.

Référence binaire

Signal appliqué au port de communication série (RS-485 bornes 68-69).

Référence prédéfinie

Référence prédéfinie pouvant être réglée entre -100 % et +100 % de la plage de référence. Huit références prédéfinies peuvent être sélectionnées par l'intermédiaire des bornes digitales.

Référence d'impulsions

Référence d'impulsions appliquée à la borne 29 ou 33, sélectionnée au par.5-13 E.digit.born.29 ou 5-15 E.digit.born. 33 [32] Entrée impulsions. La mise à l'échelle est effectuée via le groupe de paramètres 5-5* Entrée impulsions.

RefMAX

Détermine la relation entre l'entrée de référence à 100 % de la valeur de l'échelle complète (généralement 10 V, 20 mA) et la référence résultante. Valeur de référence maximum définie au par. 3-03 Réf. max.

Ref_{MIN}

Détermine la relation entre l'entrée de référence à la valeur 0 % (généralement 0 V, 0 mA, 4 mA) et la référence résultante. Valeur de référence minimum définie au par. 3-02 Référence minimale.

Référence locale

La référence locale est active lorsque le variateur de fréquence fonctionne avec la touche [Hand On] activée. Ajuster la référence avec les touches de navigation [♣]/[▼] et [◄]/[►].

Référence distante

Le système de gestion des références permettant de calculer la référence distante est présenté sur l'Illustration 3.13.

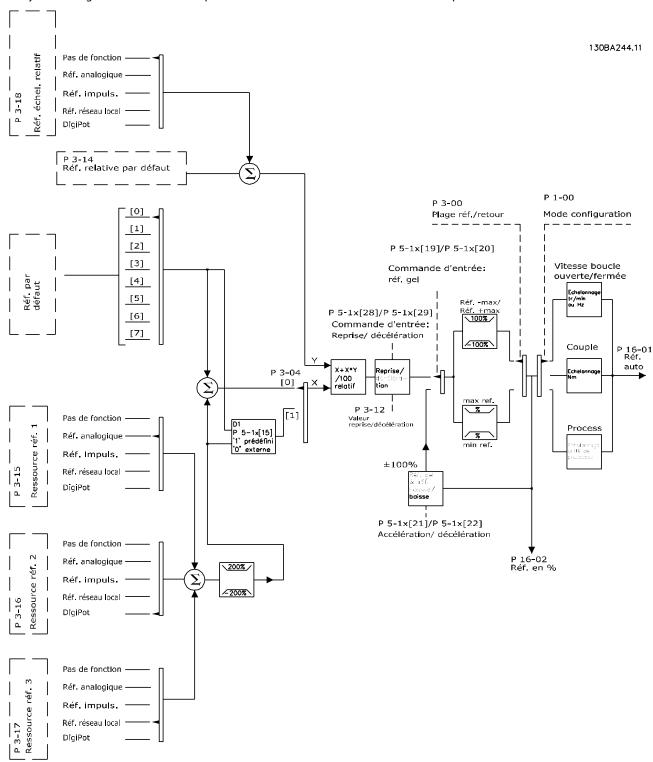


Illustration 3.13 Référence distante

La référence distante est calculée à chaque intervalle de balayage et comporte initialement deux types d'entrée de référence :

- X (référence réelle): addition (voir 3-04 Fonction référence) de quatre références maximum sélectionnées en externe, comprenant toute combinaison (déterminée par le réglage des 3-15 Ress.? Réf. 1, 3-16 Ress.? Réf. 2 et 3-17 Ress.? Réf. 3) d'une référence prédéfinie fixe (3-10 Réf.prédéfinie), de références analogiques variables, de références d'impulsions digitales variables et de références de bus série variables, et ce quel que soit le variateur de fréquence contrôlé ([Hz], [tr/min], [Nm], etc.).
- Y (référence relative): addition d'une référence prédéfinie fixe (3-14 Réf.prédéf.relative) et d'une référence analogique variable (3-18 Echelle réf.relative) en [%].

Les deux types d'entrée de référence sont associés dans le calcul suivant : Référence distante = X + X * Y / 100 %. Si la référence relative n'est pas utilisée, le par. 3-18 Echelle réf.relative doit être réglé sur [0] Pas de fonction et le par. 3-14 Réf.prédéf.relative sur 0%. Les fonctions rattrapage/ ralentissement et gel référence peuvent toutes deux être activées par les entrées digitales sur le variateur de fréquence. Les fonctions et les paramètres sont décrits dans le Guide de programmation.

La mise à l'échelle des références analogiques est décrite dans les groupes de paramètres 6-1* Entrée ANA 1 et 6-2* Entrée ANA 2 et celle des références d'impulsions digitales est décrite dans le groupe de paramètres 5-5* Entrée impulsions.

Les limites et plages de référence sont définies dans le groupe de paramètres 3-0* Limites de réf.

3.7.2 Limites de référence

Les par.3-00 Plage de réf., 3-02 Référence minimale et 3-03 Réf. max. définissent ensemble la plage autorisée de la somme de toutes les références. Cette dernière est verrouillée si nécessaire. La relation entre la référence résultante (après verrouillage) et la somme de toutes les références est représentée sur l'Illustration 3.14.

P 3-00 Plage de référence= [0] Min-Max

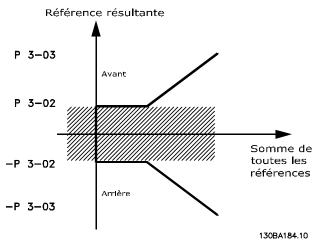


Illustration 3.14 Relation entre la référence résultante et la somme de toutes les références

P 3-00 Plage de référence= [1] -Max-Max

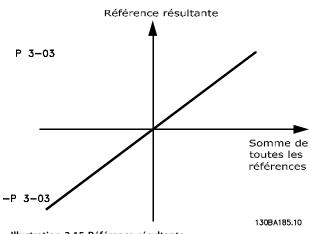


Illustration 3.15 Référence résultante

La valeur du par. 3-02 Référence minimale ne peut pas présenter une valeur inférieure à 0, à moins que le par. 1-00 Mode Config. ne soit réglé sur [3] Process. Dans ce cas, les relations entre la référence résultante (après verrouillage) et la somme de toutes les références sont telles que présentées sur l'Illustration 3.16.

P 3-00 Plage de référence= [0] Min-Max

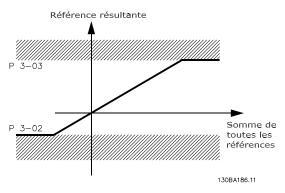


Illustration 3.16 Somme de toutes les références avec le par. 1-00 Mode Config. réglé sur [3] Process

3.7.3 Mise à l'échelle des références prédéfinies et des références du bus

Les références prédéfinies sont mises à l'échelle selon les règles suivantes :

- Lorsque le par. 3-00 Plage de réf. : [0] Min Max, la référence 0 % est égale à 0 [unité] où « unité » peut être toute unité (à savoir tr/min, m/s, bar, etc.) et la référence 100 % est égale à Max. (abs. (3-03 Réf. max.), abs. (3-02 Référence minimale)).
- Lorsque le par. 3-00 Plage de réf.: [1] -Max -+Max, la référence 0 % est égale à 0 [unité], la référence -100 % est égale à -Réf. max. et la référence 100% est égale à Réf. max.

Les références de bus sont mises à l'échelle selon les règles suivantes :

- Lorsque le par. 3-00 Plage de réf. : [0] Min Max.
 Pour obtenir une résolution maximum sur la référence de bus, la mise à l'échelle est la suivante : la référence 0 % est égale à Référence minimale et la référence 100 % à la Réf. max.
- Lorsque le par. 3-00 Plage de réf.: [1] -Max -+Max, la référence -100 % est égale à -Réf. max. et la référence 100% à Réf. max.

3.7.4 Mise à l'échelle des références et du retour analogiques et d'impulsions

Les références et le signal de retour sont mis à l'échelle à partir des entrées analogiques et d'impulsions de la même façon. La seule différence est qu'une référence au-dessus ou en dessous des « valeurs limites » minimale et maximale spécifiées (P1 et P2 sur l'*Illustration 3.17*) est verrouillée, contrairement à un signal de retour au-dessus ou en dessous de ces limites.

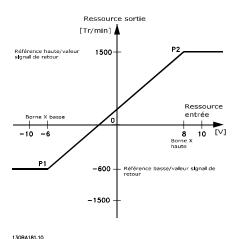
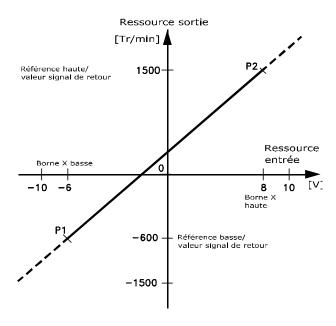
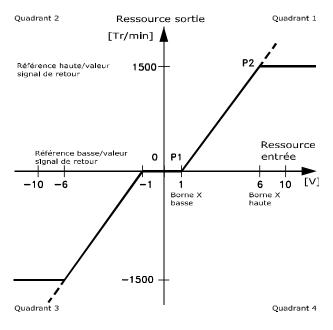



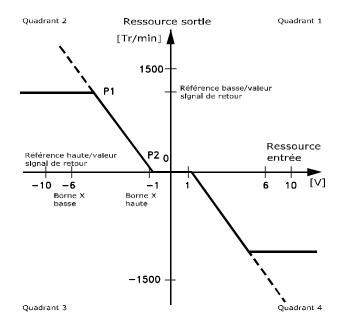
Illustration 3.17 Mise à l'échelle des références et du retour analogiques et d'impulsions

1308A182.10

Illustration 3.18 Mise à l'échelle de la sortie de référence


3.7.5 Zone morte autour de zéro

Dans certains cas, la référence (dans de rares cas, le signal de retour aussi) doit présenter une zone morte autour de zéro (c'est-à-dire qu'il faut veiller à ce que la machine soit arrêtée lorsque la référence est proche de zéro).


Pour activer la zone morte et en définir la largeur, appliquer les réglages suivants :

- La valeur de la référence minimale ou de la référence maximale doit être égale à zéro. En d'autres termes, P1 ou P2 doit être sur l'axe X sur l'Illustration 3.19.
- Et les deux points définissant le graphique de mise à l'échelle se trouvent dans le même quadrant.

Les dimensions de la zone morte sont définies par P1 ou P2, comme sur l'*Illustration 3.19*.

130BA179.10
Illustration 3.19 Zone morte

130BA180.10

Illustration 3.20 Zone morte inversée

Ainsi, une valeur limite de référence de P1 = (0 V, 0 tr/min) ne provoque pas de zone morte. Une valeur limite de référence de p. ex. P1 = (1 V, 0 tr/min) provoque une zone morte de -1 V à +1 V dans ce cas, tant que la valeur limite P2 est placée dans le Quadrant 1 ou le Quadrant 4.

L'Illustration 3.21 présente comment l'entrée de référence, dont les limites sont comprises entre Min et Max, est verrouillée.

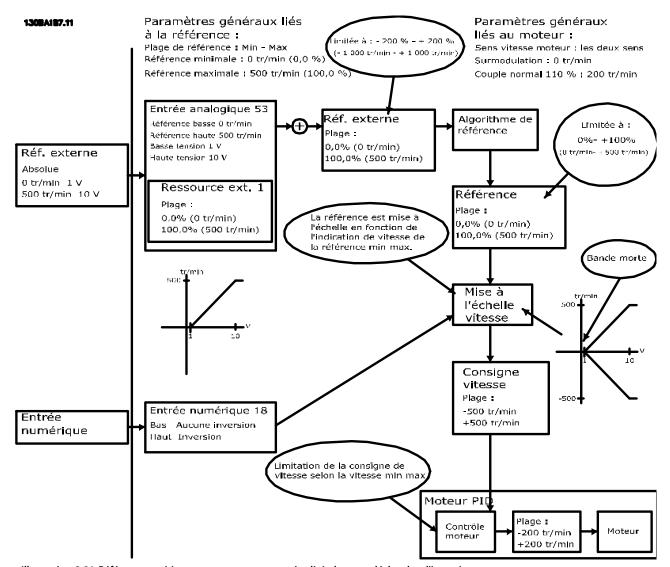


Illustration 3.21 Référence positive avec zone morte, entrée digitale pour déclencher l'inversion.

L'Illustration 3.22 présente comment l'entrée de référence, dont les limites ne sont pas comprises entre -Max et +Max, est verrouillée par rapport aux limites d'entrée haute et basse avant l'ajout à la référence externe. L'Illustration 3.22 présente également comment la référence réelle est verrouillée sur -Max à +Max par l'algorithme de référence.

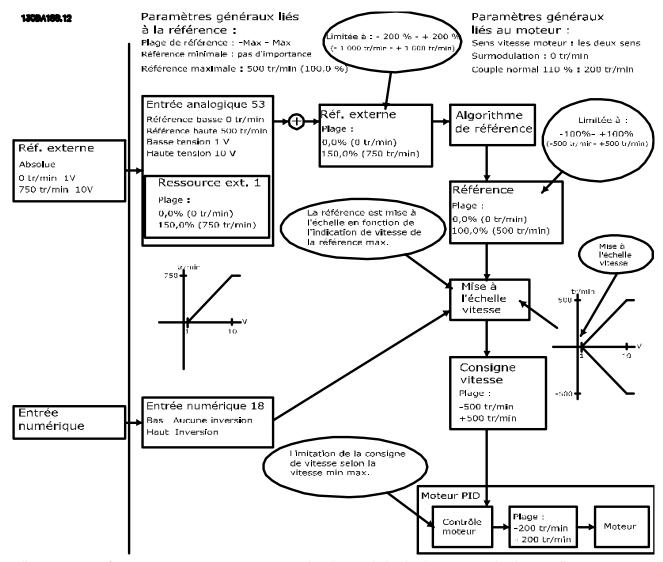


Illustration 3.22 Référence positive avec zone morte, entrée digitale pour déclencher l'inversion. Règles de verrouillage.

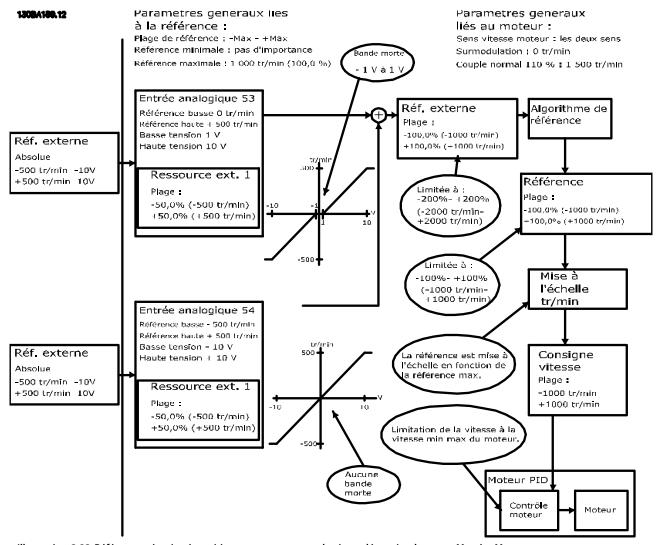


Illustration 3.23 Référence négative à positive avec zone morte, le signe détermine le sens, -Max à +Max.

4 Caractéristiques produit

4.1 Caractéristiques opérationnelles automatisées

Ces caractéristiques sont actives dès que le variateur de fréquence est en fonctionnement. Elles ne nécessitent aucune programmation ni configuration. Le fait de savoir que ces caractéristiques sont présentes permet d'optimiser la conception d'un système et sans doute d'éviter l'introduction de composants ou fonctionnalités redondants.

Le variateur de fréquence comporte un large éventail de fonctions de protection intégrées afin de le protéger et de protéger également le moteur qu'il fait fonctionner.

4.1.1 Protection contre les courts-circuits

Moteur (phase-phase)

Une mesure de courant effectuée sur chacune des trois phases moteur ou sur le circuit intermédiaire protège le variateur de fréquence contre les courts-circuits. Un court-circuit entre 2 phases de sortie se traduit par un surcourant dans l'onduleur. L'onduleur est désactivé si le courant de court-circuit dépasse la valeur limite (alarme 16 Arrêt verrouillé).

Côté secteur

Un variateur de fréquence fonctionnant correctement limite le courant qu'il tire de l'alimentation. Il est recommandé d'utiliser des fusibles et/ou des disjoncteurs du côté de l'alimentation comme protection en cas de panne d'un composant interne au variateur de fréquence (première panne). Voir l'chapitre 9.3 Mise sous tension pour plus d'informations.

AVIS!

Ceci est obligatoire pour assurer la conformité à la norme CEI 60364 pour la conformité CE et au NEC 2009 pour la conformité UL.

Résistance de freinage

Le variateur de fréquence est protégé contre les courtscircuits dans la résistance de freinage.

Répartition de la charge

Pour protéger le bus CC contre les courts-circuits et les variateurs de fréquence contre les surcharges, installer des fusibles CC en série avec les bornes de répartition de la charge de toutes les unités connectées. Voir l'chapitre 9.6.3 Répartition de la charge pour plus d'informations.

4.1.2 Protection contre les surcharges

Surtension générée par le moteur

La tension du circuit intermédiaire augmente lorsque le moteur agit comme un alternateur. Ceci se produit dans deux cas :

- La charge entraîne le moteur (à une fréquence de sortie constante générée par le variateur de fréquence): l'énergie est fournie par la charge.
- Lors de la décélération (rampe descendante), si le moment d'inertie est élevé, le frottement est faible et le temps de rampe de décélération est trop court pour que l'énergie se dissipe sous forme de perte du variateur de fréquence, du moteur et de l'installation.
- Un réglage incorrect de la compensation du glissement risque d'entraîner une tension élevée du circuit intermédiaire.
- Force contre-électromotrice FCEM issue du fonctionnement du moteur PM. Si le moteur PM est en roue libre à un régime élevé, la FCEM peut éventuellement dépasser la tolérance de tension maximum du variateur de fréquence et provoquer des dommages. Pour empêcher cela, la valeur du par. 4-19 Frq.sort.lim.hte est automatiquement limitée sur la base d'un calcul interne reposant sur la valeur des par. 1-40 FCEM à 1000 tr/min., 1-25 Vit.nom.moteur et 1-39 Pôles moteur.

AVIS!

Pour éviter que le moteur dépasse la vitesse limite (en raison d'effets de moulinet excessifs, par ex.), il est alors recommandé de l'équiper d'une résistance de freinage.

La surtension peut être gérée en utilisant une fonction de freinage (2-10 Fonction Frein et Surtension) et/ou un contrôle de surtension (2-17 Contrôle Surtension).

Fonctions de freinage

Raccorder une résistance de freinage pour la dissipation de l'énergie excédentaire. Le raccordement d'une résistance de freinage permet une tension bus CC plus élevée lors du freinage.

Le frein CA permet d'optimiser le freinage sans utiliser de résistance de freinage. Cette fonction contrôle une surmagnétisation du moteur en fonctionnant avec une charge génératorique. Cette fonction peut améliorer l'OVC. L'augmentation des pertes électriques dans le moteur permet aux fonctions OVC d'augmenter le couple de freinage sans dépasser la limite de surtension.

AVIS!

Le frein CA n'est pas aussi efficace que le freinage dynamique par résistance.

Contrôle des surtensions (OVC)

L'OVC réduit le risque d'arrêt du variateur de fréquence en raison d'une surtension sur le circuit intermédiaire. Ceci est géré par l'extension automatique du temps de rampe.

AVIS!

L'OVC peut être activé pour le moteur PM avec tout le cœur de contrôle, les PM VVC^{plus}, Flux OL et Flux CL pour les moteurs PM.

AVIS!

N'active pas le contrôle de surtension dans les applications de levage.

4.1.3 Détection de phase moteur manquante

La fonction de détection de phase moteur manquante (4-58 Surv. phase mot.) est activée par défaut pour éviter l'endommagement du moteur s'il manque une phase moteur. Le réglage par défaut est de 1 000 ms, mais il peut être ajusté pour une détection plus rapide.

4.1.4 Détection de défaut de phase secteur

Un fonctionnement dans des conditions de déséquilibre important réduit la durée de vie du moteur. Les conditions sont considérées comme sévères si le moteur fonctionne continuellement à hauteur de la charge nominale. Le réglage par défaut déclenche le variateur de fréquence en cas de déséquilibre du secteur (14-12 Fonct.sur désiqui.réseau).

4.1.5 Commutation sur la sortie

Une commutation sur la sortie entre le moteur et le variateur de fréquence est autorisée. Des messages d'erreur peuvent apparaître. Activer le démarrage à la volée pour « rattraper » un moteur qui tourne à vide.

4.1.6 Protection surcharge

Limite couple

La caractéristique de limite de couple protège le moteur contre les surcharges indépendamment de la vitesse. La limite de couple est contrôlée au par. 4-16 Mode moteur limite couple et/ou au par. 4-17 Mode générateur limite couple et le temps avant que l'avertissement de limite de couple ne se déclenche est contrôlé au par. 14-25 Délais Al./C.limit ?.

Limite courant

La limite de courant est contrôlée au par. 4-18 Limite courant et le temps avant que le variateur de fréquence ne se déclenche est contrôlé au par. 14-24 Délais Al./Limit.C.

Limite vitesse

Vitesse limite min.: 4-11 Vit. mot., limite infér. [tr/min] ou le par. 4-12 Vitesse moteur limite basse [Hz] limite la gamme de vitesse d'exploitation entre 30 et 50/60 Hz, par exemple.

Vitesse limite max. : (4-13 Vit.mot., limite supér. [tr/min] ou 4-19 Frq.sort.lim.hte) limite la fréquence de sortie max. à celle qu'est capable de fournir le variateur de fréquence.

ETR

ETR est une caractéristique électronique qui simule un relais bimétallique en s'appuyant sur des mesures internes. La caractéristique est indiquée sur l'*Illustration 4.1.*

Limite tension

L'onduleur s'arrête afin de protéger les transistors et les condensateurs du circuit intermédiaire quand un certain niveau de tension programmé en dur est atteint.

Surtempérature

Le variateur de fréquence comporte des capteurs de température intégrés et réagit immédiatement aux valeurs critiques via les limites programmées en dur.

4.1.7 Protec. rotor verrouillé

Dans certaines situations, le rotor se verrouille suite à une charge excessive ou à d'autres facteurs (le palier ou l'application crée une situation de rotor verrouillé). Cela entraîne une surchauffe de l'enroulement du moteur (le mouvement libre du rotor est nécessaire pour un refroidissement correct). Le variateur de fréquence est capable de détecter la situation de rotor verrouillé avec un contrôle de flux PM en boucle ouverte et un contrôle PM VVC^{plus} (30-22 Locked Rotor Protection).

4.1.8 Déclassement automatique

Le variateur vérifie constamment les niveaux critiques :

- haute température critique sur la carte de commande ou le radiateur;
- charge moteur élevée ;
- haute tension du circuit intermédiaire ;
- vitesse du moteur faible.

En réponse à un niveau critique, le variateur de fréquence ajuste la fréquence de commutation. Pour des températures internes élevées et critiques, ainsi que pour une vitesse du moteur faible, le variateur de fréquence peut également forcer le modèle PWM sur SFAVM.

AVIS!

Le déclassement automatique est différent lorsque le par. 14-55 Filtre de sortie est réglé sur [2] Filtre sinusoïdal fixe.

4.1.9 Optimisation automatique de l'énergie (AEO)

L'optimisation automatique de l'énergie (AEO) s'adresse au variateur de fréquence pour surveiller en permanence la charge sur le moteur et ajuster la tension de sortie afin de maximiser le rendement. En charge légère, la tension est réduite et le courant du moteur est minimisé. Le moteur bénéficie d'un meilleur rendement, d'un chauffage réduit et d'un fonctionnement plus silencieux. Il n'est pas nécessaire de sélectionner une courbe V/Hz car le variateur de fréquence ajuste automatiquement la tension du moteur.

4.1.10 Modulation automatique de la fréquence de commutation

Le variateur de fréquence génère de courtes impulsions électriques afin de former un modèle d'onde CA. La fréquence porteuse correspond au rythme de ces impulsions. Une fréquence porteuse faible (rythme faible) provoque du bruit dans le moteur, rendant la fréquence porteuse préférable. Une fréquence porteuse élevée génère toutefois de la chaleur dans le variateur de fréquence, ce qui peut limiter la quantité de courant disponible pour le moteur. L'utilisation de transistors bipolaires à porte isolée (IGBT) est synonyme de commutation haute vitesse.

La modulation automatique de la fréquence de commutation régule ces conditions automatiquement pour fournir la plus haute fréquence porteuse sans surchauffe du variateur de fréquence. En fournissant une fréquence porteuse régulée élevée, elle réduit le son du moteur à basse vitesse, lorsque le contrôle du bruit audible est critique et produit une puissance de sortie totale vers le moteur lorsque la demande le requiert.

4.1.11 Déclassement automatique pour fréquence porteuse élevée

Le variateur de fréquence a été conçu pour un fonctionnement continu à pleine charge à des fréquences porteuses comprises entre 3,0 et 4,5 kHz. Une fréquence porteuse supérieure à 4,5 kHz augmente la chaleur dans le variateur de fréquence et requiert un déclassement du courant de sortie. Le variateur de fréquence comporte une fonction automatique : le contrôle de la fréquence porteuse dépendant de la charge. Cette fonction permet au moteur de pouvoir profiter de la fréquence porteuse la plus élevée possible permise par la charge.

4.1.12 Performance de fluctuation de la puissance

Le variateur de fréquence supporte les fluctuations du secteur telles que les transitoires, les pertes transitoires, les courtes baisses de tension et les surtensions. Le variateur de fréquence compense automatiquement les tensions d'entrée de ±10 % de la valeur nominale afin de fournir une tension moteur et un couple à plein régime. Avec le redémarrage automatique sélectionné, le variateur de fréquence s'allume après le déclenchement de la tension. Avec le démarrage à la volée, le variateur de fréquence synchronise la rotation du moteur avant le démarrage.

4.1.13 Atténuation des résonances

Le bruit de résonance du moteur haute fréquence peut être éliminé par l'atténuation des résonances. L'atténuation des fréquences à sélection manuelle ou automatique est disponible.

4.1.14 Ventilateurs à température contrôlée

Des capteurs placés dans le variateur de fréquence permettent de contrôler la température des ventilateurs de refroidissement internes. Le ventilateur de refroidissement ne fonctionne pas pendant le fonctionnement à faible charge ou en mode veille ou en pause. Cela réduit le bruit, augmente l'efficacité et prolonge la durée de vie du ventilateur.

4.1.15 Conformité CEM

Les interférences électromagnétiques (IEM) ou les interférences radio-électriques (RFI, en cas de radiofréquences) sont des perturbations qui peuvent affecter un circuit électrique à cause d'une induction ou d'un rayonnement électromagnétique à partir d'une source externe. Le variateur de fréquence a été conçu pour être conforme à la norme sur les produits CEM pour les variateurs CEI 61-800-3 ainsi qu'à la norme EN 55011. Pour respecter les niveaux d'émission de la norme EN 55011, le câble du moteur doit être blindé et correctement terminé. Pour plus d'informations concernant la performance CEM, consulter le *chapitre 5.2.1 Résultats des essais CEM*.

4.1.16 Isolation galvanique des bornes de commande

Toutes les bornes de commande et de relais de sortie sont galvaniquement isolées de l'alimentation. Cela signifie que le circuit de commande est entièrement protégé du courant d'entrée. Les bornes de relais de sortie ont besoin de leur propre mise à la terre. Cette isolation est conforme aux exigences strictes de PELV pour l'isolation.

Les composants de l'isolation galvanique sont les suivants :

- L'alimentation, notamment l'isolation du signal
- Le pilotage des IGBT, des transformateurs d'impulsions et des coupleurs optoélectroniques
- Les transducteurs de courant de sortie à effet Hall

4.2 Fonctions de protection de l'application

Ce sont les fonctions les plus courantes programmées pour être utilisées sur le variateur de fréquence pour une meilleure performance du système. Elles nécessitent une programmation ou une configuration minimum. La disponibilité de ces fonctions permet d'optimiser la conception d'un système et sans doute d'éviter l'introduction de fonctionnalités ou de composants redondants. Consulter le *Guide de programmation* spécifique au produit pour obtenir des instructions sur l'activation de ces fonctions.

4.2.1 Adaptation automatique au moteur

L'adaptation automatique au moteur (AMA) est une procédure de test automatisée qui mesure les caractéristiques électriques du moteur. L'AMA fournit un modèle électronique précis du moteur. Elle permet au variateur de fréquence de calculer la performance optimale et l'efficacité avec le moteur. Le recours à la procédure AMA maximise par ailleurs la fonction d'optimisation automatique de l'énergie. L'AMA est réalisée sans rotation du moteur et sans désaccouplage de la charge du moteur.

4.2.2 Protection thermique du moteur

La protection thermique du moteur est disponible de 3 façons :

- Via la détection directe de la température par l'un des éléments suivants :
 - capteur PTC ou KTY dans les bobines du moteur et connecté à une entrée analogique ou digitale
 - le capteur PT100 ou PT1000 dans les bobines ou paliers du moteur, connecté à la carte d'entrée de capteur MCB 114
 - L'entrée de thermistance PTC sur la carte thermistance PTC MCB 112 (agréée ATEX)
- Un thermocontact mécanique (type Klixon) sur l'entrée digitale
- Via le relais thermique électronique intégré (ETR).

L'ETR calcule la température du moteur en mesurant le courant, la fréquence et le temps de fonctionnement. Le variateur de fréquence affiche la charge thermique sur le moteur en pourcentage et peut émettre un avertissement à une consigne de surcharge programmable.

Des options programmables en cas de surcharge permettent au variateur de fréquence d'arrêter le moteur, de réduire la sortie ou d'ignorer la condition. Même à faible vitesse, le variateur de fréquence satisfait aux normes sur les surcharges de moteurs électroniques l2t de classe 20.

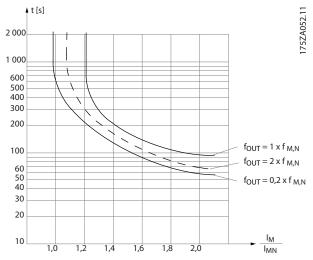


Illustration 4.1 Caractéristiques ETR

L'axe des abscisses indique le rapport entre l_{moteur} et l_{moteur} nominale. L'axe des ordonnées représente le temps en secondes avant que l'ETR ne se déclenche et fasse disjoncter le variateur de fréquence. Ces courbes montrent la vitesse nominale caractéristique à deux fois la vitesse nominale et à 0,2 fois la vitesse nominale.

À vitesse plus faible, l'ETR se déclenche à une chaleur inférieure en raison du refroidissement moindre du moteur. De cette façon, le moteur est protégé contre les surchauffes même à une vitesse faible. La caractéristique ETR calcule la température du moteur en fonction du courant et de la vitesse réels. La température calculée est visible en tant que paramètre d'affichage au par. 16-18 Thermique moteur.

Une version spéciale de l'ETR est également disponible pour les moteurs Ex-e dans les zones ATEX. Cette fonction permet de saisir une courbe spécifique pour protéger le moteur Ex-e. Le *Guide de programmation* guide l'utilisation dans la configuration.

4.2.3 Panne de secteur

En cas de panne de secteur, le variateur de fréquence continue de fonctionner jusqu'à ce que la tension présente sur le circuit intermédiaire chute en dessous du seuil d'arrêt minimal, qui est généralement inférieur de 15 % à la tension nominale d'alimentation secteur du variateur. La tension secteur disponible avant la panne et la charge du moteur déterminent le temps qui s'écoule avant l'arrêt en roue libre du variateur de fréquence.

Le variateur de fréquence peut être configuré (14-10 Panne secteur) sur différents types de comportement pendant les chutes de tension, par exemple :

- Alarme verrouillée lorsque le circuit intermédiaire est épuisé
- Roue libre avec démarrage à la volée lors du retour du secteur (1-73 Démarr. volée)
- Sauvegarde cinétique
- Décélération ctrlée

Démarrage à la volée

Cette sélection permet de rattraper un moteur, à la volée, p. ex. à cause d'une panne de courant. Cette option est très importante pour les centrifugeuses et les ventilateurs.

Sauvegarde cinétique

Cette sélection permet au variateur de fréquence de fonctionner tant qu'il reste de l'énergie dans le système. Pour les pannes courtes, le fonctionnement est rétabli dès le retour du courant, sans arrêter l'application ou sans perdre à aucun moment le contrôle. Plusieurs variantes de sauvegarde cinétique peuvent être sélectionnées.

Le comportement du variateur de fréquence en cas de chute de la tension peut être configuré aux par. 14-10 Panne secteur et 1-73 Démarr. volée.

4.2.4 Régulateur PID intégré

Le contrôleur à action par dérivation, intégral, différentiel (PID) intégré est disponible, ce qui permet d'éliminer le besoin de dispositifs de contrôle auxiliaires. Le contrôleur du PID maintient un contrôle constant des systèmes en boucle fermée lorsque la pression, le débit, la température régulés ou toute autre configuration système doivent être conservés. Le variateur de fréquence peut fournir un contrôle autosuffisant de la vitesse du moteur en réponse à des signaux de retour des capteurs distants.

Le variateur de fréquence adapte 2 signaux de retour de 2 dispositifs différents. Cette fonction permet de réguler un système avec des conditions de retour différentes. Le variateur de fréquence prend des décisions de contrôle en comparant les deux signaux afin d'optimiser la performance du système.

4.2.5 Redémarrage automatique

Le variateur de fréquence peut être programmé pour redémarrer automatiquement le moteur après un déclenchement mineur tel qu'une perte de puissance momentanée ou une fluctuation. Cette fonction élimine le besoin de réinitialisation automatique et améliore l'exploitation automatisée de systèmes contrôlés à distance. Le nombre de tentatives de redémarrage ainsi que le temps écoulé entre les tentatives peuvent être limités.

4.2.6 Démarrage à la volée

Le démarrage à la volée permet au variateur de fréquence de se synchroniser avec une rotation du moteur en marche jusqu'à la pleine vitesse, dans les deux sens. Cela évite les déclenchements dus à une surintensité. Cela réduit les contraintes mécaniques sur le système car le moteur ne reçoit aucun changement soudain de la vitesse lorsque le variateur de fréquence démarre.

4.2.7 Couple complet à vitesse réduite

Le variateur de fréquence suit une courbe V/Hz variable pour fournir un couple moteur complet, même à vitesse réduite. Le couple de sortie total peut correspondre à la vitesse de fonctionnement maximum du moteur. Au contraire, les convertisseurs à couple variable fournissent un couple de moteur réduit à faible vitesse et les convertisseurs à couple constant fournissent une tension excessive, de la chaleur et un bruit du moteur à un niveau inférieur à la vitesse totale.

4.2.8 Bipasse de fréquence

Sur certaines applications, le système peut présenter des vitesses opérationnelles qui créent une résonance mécanique. Cela génère un bruit excessif et endommage certainement les composants mécaniques du système. Le variateur de fréquence est doté de quatre largeurs de bande de fréquence de dérivation programmables. Ces dernières permettent au moteur de dépasser les vitesses qui induisent une résonance du système.

4.2.9 Préchauffage du moteur

Pour préchauffer un moteur dans un environnement humide, une petite quantité de courant CC peut être chargée en continu dans le moteur pour le protéger de la condensation et des effets d'un démarrage à froid. Ceci permet d'éliminer la nécessité d'un appareil individuel de chauffage.

4.2.10 4 configurations programmables

Le variateur de fréquence possède quatre process qui peuvent être programmés indépendamment les uns des autres. Avec le multi process, il est possible de basculer entre les fonctions programmées de façon indépendante et activées par des entrées digitales ou une commande série. Des process indépendants sont utilisés par exemple pour modifier des références, pour un fonctionnement jour/nuit ou été/hiver ou pour contrôler plusieurs moteurs. Le process actif est affiché sur le LCP.

Les données de process peuvent être copiées d'un variateur de fréquence à un autre en téléchargeant les informations depuis le LCP amovible.

4.2.11 Freinage dynamique

Le freinage dynamique est effectué par :

Freinage résistance

Un frein IGBT maintient la surtension sous un certain seuil en dirigeant l'énergie du frein du moteur vers la résistance de freinage connectée (par. 2-10 Fonction Frein et Surtension = [1]).

Frein CA

L'énergie de freinage est répartie dans le moteur en modifiant les conditions de perte dans le moteur. La fonction de frein CA ne peut pas être utilisée dans les applications avec une fréquence de cycle élevée car cela entraîne une surchauffe du moteur (2-10 Fonction Frein et Surtension = [2]).

Freinage CC

Un courant CC en surmodulation ajouté au courant CA fonctionne comme un frein magnétique (2-02 Temps frein CC ≠ 0 s).

4.2.12 Commande de frein mécanique en boucle ouverte

Paramètres de contrôle de l'exploitation d'un frein électromagnétique (mécanique), généralement nécessaire dans les applications de levage.

Pour cela, utiliser une sortie de relais (relais 01 ou 02) ou une sortie digitale programmée (bornes 27 ou 29). Cette sortie est normalement fermée lorsque le variateur de fréquence est incapable de « maintenir » le moteur, par exemple du fait d'une charge trop élevée. Sélectionner [32] Ctrl frein mécanique pour des applications avec un frein électromagnétique au par. 5-40 Fonction relais, 5-30 S.digit.born.27 ou 5-31 S.digit.born.29. En cas de sélection de [32] Ctrl frein mécanique, le frein mécanique est fermé lors du démarrage et jusqu'à ce que le courant de sortie dépasse le niveau sélectionné au par. 2-20 Activation courant frein. Pendant l'arrêt, le frein mécanique s'active jusqu'à ce que la vitesse soit inférieure au niveau spécifié au par. 2-21 Activation vit.frein[tr/mn]. Dans une situation où le variateur de fréquence est en état d'alarme, de surcourant ou de surtension, le frein mécanique est immédiatement mis en circuit. C'est aussi le cas en cas d'absence sûre du couple.

AVIS!

Les caractéristiques du mode protection et du retard de déclenchement (14-25 Délais Al./C.limit ? et 14-26 Temps en U limit.) peuvent retarder l'activation du frein mécanique dans un état d'alarme. Ces caractéristiques doivent être activées pour des applications de levage.

4

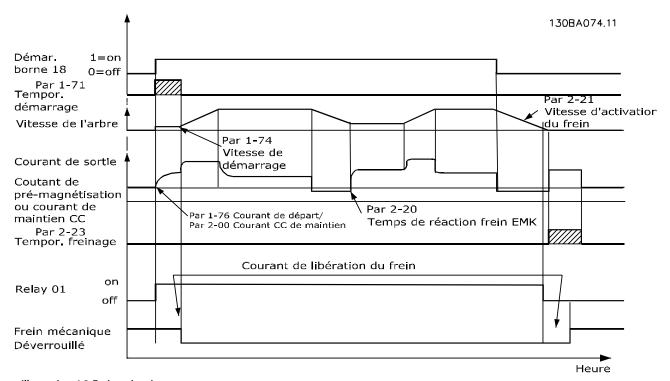


Illustration 4.2 Frein mécanique

4.2.13 Commande de frein mécanique en boucle ouverte/Frein mécanique de levage

Le contrôle du frein mécanique de levage prend en charge les fonctions suivantes :

- 2 voies pour le signal de retour du frein mécanique afin d'assurer une plus grande protection contre les comportements imprévus suite à une rupture de câble
- Surveillance du signal de retour du frein mécanique tout au long du cycle. Cela permet de protéger le frein mécanique en particulier si plusieurs variateurs de fréquence sont raccordés au même arbre.
- L'absence de rampe d'accélération jusqu'au signal de retour confirme que le frein mécanique est ouvert.
- Contrôle de charge amélioré à l'arrêt. Si le par. 2-23 Activation retard frein est défini trop bas, l'avertissement W22 s'active et le couple ne peut pas suivre une rampe de décélération.
- La transition lorsque le moteur reprend la charge du frein peut être configurée. Le par. 2-28 Facteur amplification gain peut être augmenté afin de minimiser le mouvement. Pour une transition très souple, passer de la commande de vitesse à la commande de position pendant le changement.
 - Régler le par. 2-28 Facteur amplification gain sur 0 pour activer la commande de position pendant le 2-25 Tps déclchment frein. Cela active les paramètres 2-30 Position P Start Proportional Gain à 2-33 Speed PID Start Lowpass Filter Time, paramètres PID pour la commande de position.

Illustration 4.3 Séquence de déclenchement du frein pour la commande de frein mécanique pour levage. Cette commande de frein est disponible en FLUX avec signal de retour du moteur uniquement, pour les moteurs PM non saillants et asynchrones.

Les paramètres 2-26 Réf. couple à 2-33 Speed PID Start Lowpass Filter Time sont disponibles uniquement pour la commande de frein mécanique de levage (FLUX avec signal de retour du moteur). Les paramètres 2-30 Position P Start Proportional Gain à 2-33 Speed PID Start Lowpass Filter Time peuvent être configurés pour une transition très souple de la commande de vitesse à la commande de position pendant le par. 2-25 Tps déclchment frein, temps pendant lequel la charge est transférée du frein mécanique vers le variateur de fréquence. Les par.

2-30 Position P Start Proportional Gain à 2-33 Speed PID Start Lowpass Filter Time sont activés lorsque le par. 2-28 Facteur amplification gain est réglé sur 0. Voir l'Illustration 4.3 pour plus d'informations.

AVIS!

Pour prendre connaissance d'un exemple de commande de frein mécanique avancée pour des applications de levage, voir le chapitre 10 Exemples d'applications.

4.2.14 Contrôleur logique avancé (SLC)

Le contrôleur de logique avancé (SLC) est une séquence d'actions définies par l'utilisateur (voir par. 13-52 Action contr. logique avancé [x]) exécutées par le SLC lorsque l'événement associé défini par l'utilisateur (voir par. 13-51 Événement contr. log avancé [x]) est évalué comme étant VRAI par le SLC.

La condition pour un événement peut être un état particulier ou qu'une sortie provenant d'une règle logique ou d'un opérande comparateur devienne VRAI. Cela entraîne une Action associée tel qu'indiqué sur l'Illustration 4.4.

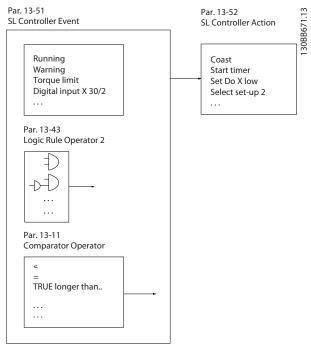


Illustration 4.4 Événement SCL et action

Les événements et actions sont numérotés et liés par paires. Cela signifie que lorsque l'événement [0] est satisfait (atteint la valeur VRAI), l'action [0] est exécutée. Après cela, les conditions d'événement [1] sont évaluées et si elles s'avèrent être VRAI, l'action [1] est exécutée et ainsi de suite. Un seul événement est évalué à chaque fois. Si un événement est évalué comme étant FAUX, rien ne se passe (dans le SLC) pendant l'intervalle de balayage en cours et aucun autre événement n'est évalué. Cela signifie que lorsque le SLC démarre, il évalue l'événement [0] (et uniquement l'événement [0]) à chaque intervalle de balayage. Uniquement lorsque l'événement [0] est évalué comme étant vrai (TRUE), le SLC exécute l'action [0] et commence l'évaluation de l'événement [1]. Il est possible de programmer de 1 à 20 événements et actions.

Lorsque le dernier événement/action a été exécuté, la séquence recommence à partir de l'événement [0]/action [0]. L'Illustration 4.5 donne un exemple avec 4 événements/actions:

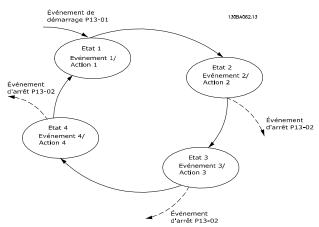


Illustration 4.5 Ordre d'éxécution lorsque 4 événements/ actions sont programmés

Comparateurs

Les comparateurs sont utilisés pour comparer des variables continues (c.-à-d. fréquence de sortie, courant de sortie, entrée analogique, etc.) à des valeurs prédéfinies fixes.

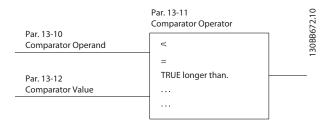


Illustration 4.6 Comparateurs

Règles de Logique

Associer jusqu'à trois entrées booléennes (entrées VRAI/FAUX) à partir des temporisateurs, comparateurs, entrées digitales, bits d'état et événements à l'aide des opérateurs logiques ET, OU, PAS.

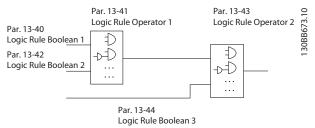


Illustration 4.7 Règles de Logique

4.2.15 Absence sûre du couple

Pour en savoir plus sur l'Absence sûre du couple, se reporter au Manuel d'utilisation de l'Absence sûre du couple des variateurs de fréquence VLT® FC Series.

4.3 Danfoss VLT® FlexConcept®

Danfoss VLT® FlexConcept® est une solution de variateur de fréquence rentable, à haut rendement énergétique et flexible destinée principalement aux convoyeurs. Le concept comprend le variateur VLT® OneGearDrive® entraîné par le VLT® AutomationDrive FC 302 ou le VLT® Decentral Drive FCD 302.

OneGearDrive est essentiellement un moteur à aimant permanent avec un engrenage conique. L'engrenage conique peut être fourni avec différents rapports de vitesse.

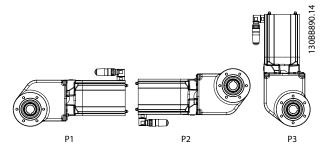


Illustration 4.8 OneGearDrive

Le OneGearDrive peut être entraîné par le VLT® AutomationDrive FC 302 et le VLT® Decentral Drive FCD 302 dans les puissances suivantes en fonction des exigences de l'application réelle :

- 0,75 kW
- 1,1 kW
- 1,5 kW
- 2,2 kW
- 3,0 kW

Lorsque [1] PM, SPM non saillant a été sélectionné au par. du FC 302 ou du FCD 302, le OneGearDrive peut être sélectionné au par. 1-11 Fabricant moteur et les paramètres recommandés sont définis automatiquement.

Pour plus d'informations, consulter le *Guide de programmation* des *VLT® AutomationDrive FC 301/FC 302*, le *Guide de sélection* du *VLT® OneGearDrive* et *www.danfoss.com/BusinessAreas/DrivesSolutions/VLTFlexConcept/*

5 Intégration du système

5.1 Conditions ambiantes de fonctionnement

5.1.1 Humidité

Même si le variateur de fréquence peut fonctionner convenablement à une humidité relative élevée (jusqu'à une humidité relative de 95 %), la condensation doit toujours être évitée. Il existe un risque spécifique de condensation quand le variateur de fréquence est plus froid que l'air ambiant humide. L'humidité contenue dans l'air peut se condenser sur les composants électroniques et provoquer des courts-circuits. De la condensation se dépose sur les unités non alimentées. Il est conseillé d'installer un élément thermique dans l'armoire lorsqu'il existe un risque de condensation lié aux conditions ambiantes. Éviter toute installation dans des endroits exposés au gel.

Sinon, le fait d'exploiter le variateur de fréquence en mode veille (avec le dispositif relié au secteur) peut aider à réduire le risque de condensation. Vérifier cependant si la dissipation de puissance est suffisante pour garder les circuits du variateur de fréquence secs.

5.1.2 Température

Les limites de température ambiante minimale et maximale sont spécifiées pour tous les variateurs de fréquence. Le fait d'éviter des températures ambiantes extrêmes prolonge la durée de vie de l'équipement et maximise la fiabilité du système global. Respecter les recommandations répertoriées pour une performance et une longévité optimales de l'équipement.

- Même si les variateurs de fréquence peuvent fonctionner à des températures pouvant descendre jusqu'à -10 °C, le fonctionnement correct à charge nominale est garanti à 0 °C ou plus uniquement.
- Ne pas dépasser la limite de température maximale.
- La durée de vie des composants électroniques baisse de 50 % tous les 10 °C lorsqu'ils sont utilisés au-dessus de leur température de conception.
- Même les dispositifs présentant des niveaux de protection IP54, IP55 ou IP66 doivent être utilisés dans les plages de température ambiante spécifiées.

• Une climatisation supplémentaire de l'armoire ou du site d'installation peut s'avérer nécessaire.

5.1.3 Température et refroidissement

Des ventilateurs sont intégrés aux variateurs de fréquence afin de garantir un refroidissement optimal. Le ventilateur principal force le débit d'air le long des ailettes de refroidissement du dissipateur de chaleur, ce qui garantit le refroidissement de l'air interne. Certaines tailles de puissance comportent un petit ventilateur secondaire près de la carte de commande, ce qui garantit la circulation de l'air interne afin d'éviter les points chauds. Le ventilateur principal est contrôlé par la température interne du variateur de fréquence et la vitesse augmente progressivement avec la température, réduisant le bruit et la consommation d'énergie lorsque les besoins sont faibles et garantissant un refroidissement maximal en cas de besoin. Le contrôle du ventilateur peut être adapté via le par. 14-52 Contrôle ventil pour s'adapter à toutes les applications, mais aussi pour une protection contre les effets negatifs du refroidissement dans des conditions très froides. En cas de surtempérature à l'intérieur du variateur de fréquence, il déclasse la fréquence de commutation et le modèle (voir le chapitre 5.1.4 Déclassement manuel pour plus d'informations).

Les limites de température ambiante minimale et maximale sont spécifiées pour tous les variateurs de fréquence. Le fait d'éviter des températures ambiantes extrêmes prolonge la durée de vie des variateurs de fréquence et maximise la fiabilité du système global. Respecter les recommandations répertoriées pour une performance et une longévité optimales de l'équipement.

- Même si les variateurs de fréquence peuvent fonctionner à des températures jusqu'à -10 °C, un fonctionnement correct à charge nominale est garanti uniquement à 0 °C ou plus.
- Ne pas dépasser la limite de température maximale.
- Ne pas dépasser la température moyenne sur 24 h maximum.
 (La température moyenne sur 24 h correspond à la température ambiante max. moins 5 °C.
 Exemple : la température max. est de 50 °C et la température moyenne maximum sur 24 h de 45 °C)
- Respecter les conditions d'espace libre minimum en haut et en bas (chapitre 8.2.1.1 Dégagement).

- En règle générale, la durée de vie des composants électroniques baisse de 50 % tous les 10 °C lorsqu'ils sont utilisés à une température supérieure à la température de conception.
- Même les dispositifs présentant des niveaux de protection élevés doivent être conformes aux plages de température ambiante spécifiées.
- Une climatisation supplémentaire de l'armoire ou du site d'installation peut s'avérer nécessaire.

5.1.4 Déclassement manuel

Envisager le déclassement dans l'une des conditions suivantes.

- Fonctionnement au-dessus de 1 000 m (faible pression atmosphérique)
- Fonctionnement à basse fréquence
- Câbles moteur longs
- Câbles présentant une section large
- Température ambiante élevée

Pour plus d'informations, se reporter au chapitre 6.2.6 Déclassement pour température ambiante.

5.1.4.1 Déclassement pour fonctionnement à faible vitesse

Lorsqu'un moteur est raccordé à un variateur de fréquence, il est nécessaire de vérifier que son refroidissement est adapté.

Le niveau de chauffe dépend de la charge sur le moteur ainsi que de la vitesse et de la durée de fonctionnement.

Applications de couple constant (mode CT)

Un problème peut survenir à faible vitesse de rotation dans des applications de couple constant. Dans une application de couple constant, un moteur peut surchauffer à des vitesses faibles en raison du peu d'air de refroidissement venant du ventilateur intégré au moteur. Si le moteur doit fonctionner en continu à une vitesse de rotation inférieure à la moitié de la vitesse nominale, il convient donc de lui apporter un supplément d'air de refroidissement (ou d'utiliser un moteur conçu pour ce type de fonctionnement).

Une autre solution consiste à réduire le degré de charge du moteur en sélectionnant un moteur plus grand. Cependant, la conception du variateur de fréquence impose des limites quant à la taille du moteur.

Applications de couple variable (quadratique) (VT)

Dans les applications VT telles que pompes centrifuges et ventilateurs, lorsque le couple est proportionnel au carré de la vitesse et la puissance est proportionnelle au cube de la vitesse, il n'y a pas besoin de refroidissement ou de déclassement du moteur.

5.1.4.2 Déclassement pour basse pression atmosphérique

La capacité de refroidissement de l'air est amoindrie en cas de faible pression atmosphérique.

Au-dessous de 1 000 m, aucun déclassement n'est nécessaire, mais au-dessus de 1 000 m, la température ambiante (T_{AMB}) ou le courant de sortie maximal (I_{sortie}) doit être déclassé conformément à l'*Illustration 5.1*.

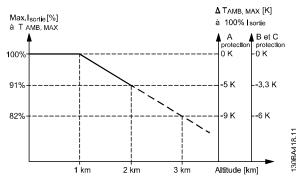


Illustration 5.1 Déclassement du courant de sortie en fonction de l'altitude à T_{AMB, MAX} pour les châssis de tailles A, B et C. À des altitudes supérieures à 2 000 m, contacter Danfoss au sujet de la norme PELV.

Une autre solution consiste à diminuer la température ambiante à haute altitude et donc à garantir un courant de sortie de 100 %. Voici un exemple de lecture du graphique : la situation à 2 000 m est élaborée pour un protection de type B avec T_{AMB, MAX} = 50° C. À une température de 45°C (T_{AMB, MAX} - 3,3 K), 91 % du courant de sortie nominal est disponible. À une température de 41,7 °C, 100 % du courant de sortie nominal est disponible.

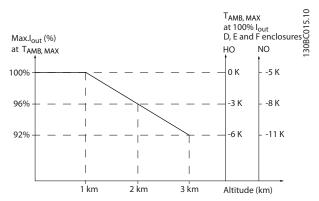


Illustration 5.2 Déclassement du courant de sortie en fonction de l'altitude à T_{AMB, MAX} pour les protections de types D3h.

5

5.1.5 Bruit acoustique

Le bruit acoustique du variateur de fréquence provient de 3 sources

- Bobines du circuit intermédiaire CC
- Filtre RFI obstrué
- Ventil. int.

Se reporter au chapitre 6.2.9 Bruit acoustique pour obtenir les données sur le bruit acoustique.

5.1.6 Vibrations et chocs

Le variateur de fréquence est testé selon la procédure basée sur les normes CEI 68-2-6/34/35 et 36. Ces tests soumettent l'appareil à des forces de 0,7 g, dans la plage de 18 à 1 000 Hz de façon aléatoire, dans 3 directions, pendant 2 heures. Tous les variateurs de fréquence Danfoss répondent aux spécifications correspondant à ces conditions lorsque l'appareil est à montage mural ou au sol, mais aussi lorsqu'il est monté dans les panneaux fixes au mur ou au sol.

5.1.7 Atmosphères agressives

5.1.7.1 Gaz

Les gaz agressifs, tels que le sulfure d'hydrogène, le chlore ou l'ammoniaque, peuvent endommager les composants électriques et mécaniques du variateur de fréquence. La contamination de l'air de refroidissement peut également entraîner la décomposition graduelle des pistes de cartes de circuit imprimé et les joints de porte. Des contaminants agressifs sont souvent présents dans les stations d'épuration des eaux usées ou les piscines. Un signe clair d'atmosphère agressive est la corrosion du cuivre.

Dans des atmosphères explosives, les protections IP restreintes sont recommandées avec les cartes de circuit imprimé à revêtement conforme. Voir le *Tableau 5.1* pour connaître les valeurs des revêtements conformes.

AVIS!

Le variateur de fréquence est livré en standard avec un revêtement de classe 3C2. Le revêtement de classe 3C3 est disponible à la demande.

		Classe				
Type de gaz	Unité	3C1	1 3C2		3C3	
			Valeur moyenne	Valeur max.	Valeur moyenne	Valeur max.
Sel marin	n/a	Aucun	Brouillard salin		Brouillard salin	
Oxydes de soufre	mg/m³	0,1	0,3	1,0	5,0	10
Sulfure d'hydrogène	mg/m³	0,01	0,1	0,5	3,0	10
Chlore	mg/m³	0,01	0,1	0,03	0,3	1,0
Chlorure d'hydrogène	mg/m³	0,01	0,1	0,5	1,0	5,0
Fluorure d'hydrogène	mg/m³	0,003	0,01	0,03	0,1	3,0
Ammoniaque	mg/m³	0,3	1,0	3,0	10	35
Ozone	mg/m³	0,01	0,05	0,1	0,1	0,3
Azote	mg/m³	0,1	0,5	1,0	3,0	9,0

Tableau 5.1 Classes des revêtements conformes

Les valeurs maximales sont des valeurs de crête transitoires qui ne doivent pas dépasser 30 minutes par jour.

5.1.7.2 Exposition à la poussière

L'installation de variateurs de fréquence dans des environnements fortement exposés à la poussière est souvent inévitable. La poussière affecte les unités montées au mur ou sur châssis avec un niveau de protection IP55 ou IP66 mais aussi les dispositifs à montage en armoire présentant un niveau de protection IP21 ou IP20. Les trois aspects décrits ci-dessous doivent être pris en compte quand des variateurs de fréquence sont installés dans ces environnements.

Refroidissement réduit

La poussière se dépose sur la surface du dispositif et à l'intérieur, sur les cartes de circuit imprimé et les composants électroniques. Ces dépôts agissent comme des couches isolantes et gênent le transfert de chaleur dans l'air ambiant, réduisant la capacité de refroidissement. Les composants deviennent plus chauds. Les composants électroniques vieillissent prématurément et la durée de vie de l'unité diminue. Les dépôts de poussière sur le radiateur au dos de l'unité réduisent également la durée de vie de cette dernière.

Ventilateurs de refroidissement

Le débit d'air de refroidissement de l'unité est produit par des ventilateurs, qui sont généralement situés au dos du dispositif. Les rotors de ventilateur disposent de petits roulements dans lesquels la poussière peut pénétrer et agir comme un abrasif. Cela entraîne un endommagement des paliers et une panne du ventilateur.

Filtres

Les variateurs de fréquence haute puissance sont équipés de ventilateurs de refroidissement qui expulsent l'air chaud situé à l'intérieur du dispositif. Au-dessus d'une certaine dimension, ces ventilateurs sont équipés de tapis de filtre. Ces filtres peut rapidement se boucher s'ils sont utilisés dans des environnements très poussiéreux. Des mesures de prévention sont nécessaires dans ces conditions.

Maintenance périodique

Dans les conditions décrites ci-dessus, il est recommandé de nettoyer le variateur de fréquence pendant la maintenance périodique. Éliminer la poussière qui s'est déposée sur le radiateur et les ventilateurs, puis nettoyer les tapis de filtre.

5.1.7.3 Atmosphères potentiellement explosives

Les systèmes utilisés dans des atmosphères potentiellement explosives doivent répondre aux conditions particulières. La directive européenne 94/9/VCE décrit le fonctionnement des dispositifs électroniques dans des atmosphères potentiellement explosives.

La température des moteurs contrôlés par des variateurs de fréquence dans des atmosphères potentiellement explosives doit être surveillée avec une sonde de température PTC. Les moteurs avec protection de classe « d » ou « e » sont approuvés pour cet environnement.

- La classification e vise à empêcher la production d'étincelles. Le variateur FC 302 dont la version micrologicielle est V6.3x ou supérieure est équipé d'une fonction de « surveillance thermique ETR AREX » pour le fonctionnement de moteurs Ex-e spécialement approuvés. Associée au dispositif de surveillance PTC agréé ATEX tel que la carte thermistance PTC MCB 112, l'installation n'a pas besoin d'homologation individuelle par un organisme agréé, en d'autres termes pas besoin de paires appariées.
- La classification d vise à garantir qu'en cas d'étincelles, elle sera confinée dans un espace protégé.
 Même s'ils ne requièrent aucune approbation, des câblages et un confinements spéciaux sont nécessaires.
- La combinaison d/e est la plus utiliséé dans les atmosphères potentiellement explosives. Le moteur lui-même présente une classe de protection contre l'inflammation « e », alors que le câblage du moteur et l'environnement de connexion sont exécutés en conformité avec la classe de protection « e ». La restriction sur l'espace de connexion « e » porte sur la tension maximale autorisée dans cet espace. La tension de sortie d'un variateur de fréquence se limite généralement à la tension secteur. La modulation de la tension de sortie peut générer une tension de crête élevée pour la classification e. Dans la pratique, l'utilisation d'un filtre sinus au niveau de la sortie du variateur de fréquence s'est avérée efficace pour atténuer les grands pics de tension.

5

AVIS!

Ne jamais installer de variateur de fréquence dans une atmosphère potentiellement explosive. Installer le variateur de fréquence dans une armoire située à l'extérieur de cette zone. L'utilisation d'un filtre sinus au niveau de la sortie du variateur de fréquence est aussi recommandée pour atténuer la tension de la montée dv/dt et le pic de tension. Raccourcir au maximum les câbles du moteur.

AVIS!

Les unités VLT® AutomationDrive comportant l'option MCB 112 disposent de la surveillance par thermistance du moteur certifiée PTB pour les atmosphères potentiellement explosives. Des câbles de moteur blindés ne sont pas nécessaires quand les variateurs de fréquence sont utilisés avec des filtres de sortie sinusoïdaux.

5.1.8 Maintenance

Les modèles de variateur de fréquence Danfoss sont sans entretien jusqu' à 90 kW. Les variateurs de fréquence haute puissance (110 kW ou plus) intègrent des tapis de filtre qui doivent être nettoyés de temps en temps par l'opérateur, selon l'exposition à la poussière et aux contaminants. Des intervalles d'entretien des ventilateurs (environ 3 ans) et des condensateurs (environ 5 ans) sont recommandés dans la plupart des environnements.

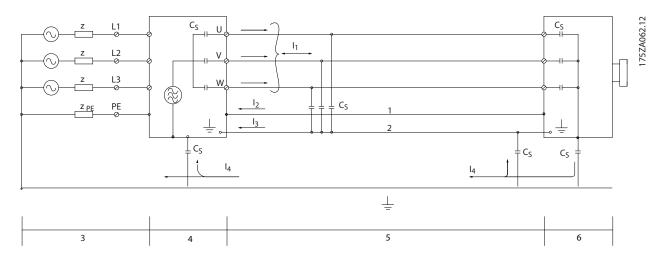
5.1.9 Stockage

Comme tout équipement électronique, les variateurs de fréquence doivent être entreposés dans un endroit sec. Aucune mise en forme périodique (charge du condensateur) n'est nécessaire pendant le stockage.

Il est recommandé de garder l'équipement étanche dans son emballage jusqu'à l'installation.

5.2 Généralités concernant les normes CEM

Les interférences électriques sont généralement produites par conduction à des fréquences comprises entre 150 kHz et 30 MHz. Des interférences en suspension dans l'air émanant du système du variateur de fréquence (30 MHz-1 GHz) sont notamment générées par l'onduleur, le câble du moteur et le moteur.


Comme le montre l'Illustration 5.3, les courants de fuite sont imputables à la capacitance dans le câble moteur et au rapport dU/dt élevé de la tension du moteur.

La mise en œuvre d'un câble moteur blindé augmente le courant de fuite (voir l'Illustration 5.3) car les câbles blindés ont une capacité par rapport à la terre supérieure à celle des câbles non blindés. L'absence de filtrage du courant de fuite se traduit par une perturbation accentuée du réseau dans la plage d'interférence radioélectrique inférieure à 5 MHz environ. Étant donné que le courant de fuite (I₁) est renvoyé vers l'unité via le blindage (I₃), en principe, le champ électromagnétique (I₄) émis par le câble blindé du moteur est donc faible, conformément à l'Illustration 5.3.

Le blindage réduit l'interférence rayonnée mais augmente les perturbations basses fréquences sur le secteur. Relier le blindage du câble moteur à la fois au côté moteur et au côté variateur de fréquence. Pour cela, il convient d'utiliser les brides pour blindage intégrées afin d'éviter des extrémités blindées torsadées (queues de cochon). Les queues de cochon augmentent l'impédance du blindage à des fréquences élevées, ce qui réduit l'effet du blindage et accroît le courant de fuite (l4).

En cas d'utilisation d'un câble blindé pour le relais, le câble de commande, l'interface signal et le frein, raccorder le blindage à la protection, aux deux extrémités. Dans certaines situations toutefois, il est nécessaire de casser le blindage pour éviter les boucles de courant.

1	Fil de terre	4	Variateur de fréquence
2	Écran	5	Câble moteur blindé
3	Alimentation secteur CA	6	Moteur

Illustration 5.3 Situation à l'origine de courants de fuite

En cas de raccordement du blindage sur une plaque destinée au montage du variateur de fréquence, cette plaque doit être métallique afin de pouvoir renvoyer les courants de blindage vers l'appareil. Il importe également d'assurer un bon contact électrique à partir de la plaque de montage à travers les vis de montage et jusqu'au châssis du variateur de fréquence.

En cas d'utilisation de câbles non blindés, certaines exigences en matière d'émission ne sont pas respectées mais les exigences d'immunité sont respectées.

Utiliser les câbles de moteur et de la résistance de freinage les plus courts possibles pour réduire le niveau d'interférences émises par le système dans son ensemble (unité et installation). Éviter de placer les câbles du moteur et du frein à côté de câbles sensibles aux perturbations. Les interférences radioélectriques supérieures à 50 MHz (rayonnées) sont générées en particulier par les composants électroniques de commande.

AVIS!

5.2.1 Résultats des essais CEM

Les résultats des essais suivants ont été obtenus sur un système regroupant un variateur de fréquence, un câble de commande blindé, un boîtier de commande doté d'un potentiomètre ainsi qu'un moteur et un câble moteur blindé (Ölflex Classic 100 CY) à une fréquence de commutation nominale. Le Tableau 5.2 indique les longueurs maximum de câble pour obtenir la conformité.

Les conditions peuvent changer significativement pour les autres process.

AVIS!

Consulter le Tableau 9.19 pour les câbles moteur parallèles.

Filtre de type RFI		Émission transmise		Émis	ssion par rayonne	ment	
		Lon	gueur de câble	e [m]			
Normes et	EN 55011/CISPR 11	Classe B	Classe A	Classe A	Classe B	Classe A	Classe A
exigences			groupe 1	Groupe 2		Groupe 1	Groupe 2
	EN/CEI 61800-3	Catégorie C1	Catégorie C2	Catégorie C3	Catégorie C1	Catégorie C2	Catégorie C3
H1							
FC 301	0-37 kW 200-240 V	10	50	50	Non	Oui	Oui
	0-75 kW 380-480 V	10	50	50	Non	Oui	Oui
FC 302	0-37 kW 200-240 V	50	150	150	Non	Oui	Oui
	0-75 kW 380-480 V	50	150	150	Non	Oui	Oui
H2/H5		•	•		-		
FC 301	0-3,7 kW 200-240 V	Non	Non	5	Non	Non	Oui
FC 302	5,5-37 kW 200-240 V ²⁾	Non	Non	25	Non	Non	Oui
	0-7,5 kW 380-500 V	Non	Non	5	Non	Non	Oui
	11-75 kW 380-500 V ²⁾	Non	Non	25	Non	Non	Oui
	11-22 kW 525-690 V ²⁾	Non	Non	25	Non	Non	Oui
	30-75 kW 525-690 V ²⁾	Non	Non	25	Non	Non	Oui
Н3	'		!				
FC 301	0-1,5 kW 200-240V	2,5	25	25	Non	Oui	Oui
	0-1,5 kW 380-480 V	2,5	25	25	Non	Oui	Oui
H4	•	•	•				•
FC 302	1,1-7,5 kW 525-690 V	Non	100	100	Non	Oui	Oui
	11-22 kW 525-690 V	Non	100	100	Non	Oui	Oui
	11-37 kW 525-690 V ³	Non	150	150	Non	Oui	Oui
	30-75 kW 525-690 V	Non	150	150	Non	Oui	Oui
Hx ¹⁾	•	•	•		· '		•
FC 302	0,75-75 kW 525-600 V	Non	Non	Non	Non	Non	Non

Tableau 5.2 Résultats du test CEM (émissions) Longueur de câble du moteur maximale

¹⁾ Les versions Hx peuvent être utilisées conformément à la norme EN/CEI 61800-3 catégorie C4.

²⁾ T5, 22-45 kW et T7, 22-75 kW sont conformes à la classe A groupe 1 avec un câble moteur de 25 m. Certaines restrictions s'appliquent à l'installation (contacter Danfoss pour plus de détails).

Hx, H1, H2, H3, H4 ou H5 est défini dans le code de type en pos. 16-17 pour les filtres CEM (voir le Tableau 7.1).

³⁾ IP20

5.2.2 Conditions d'émission

La norme produit CEM pour les variateurs de fréquence définit 4 catégories (C1, C2, C3 et C4) avec des exigences spécifiques pour les émissions et l'immunité. Le *Tableau 5.3* fournit la définition des 4 catégories et la classification équivalente de la norme EN 55011.

Catégorie	Définition Variateurs de fréquence installés	Classe d'émission équivalente dans la norme EN 55011 Classe B
	dans un environnement premier (habitat et commerce) avec une tension d'alimentation inférieure à 1 000 V.	
C2	Variateurs de fréquence installés dans un environnement premier (habitat et commerce) avec une tension d'alimentation inférieure à 1 000 V, qui ne sont ni enfichables ni amovibles et prévus pour être installés et mis en service par un professionnel.	Classe A groupe 1
C3	Variateurs de fréquence installés dans un environnement second (industriel) avec une tension d'alimentation inférieure à 1 000 V.	Classe A groupe 2
C4	Variateurs de fréquence installés dans un environnement second avec une tension d'alimentation égale ou supérieure à 1 000 V ou un courant nominal égal ou supérieur à 400 A ou prévus pour un usage dans des systèmes complexes.	Aucune limite. Un plan CEM doit être effectué.

Tableau 5.3 Corrélation entre la norme CEI 61800-3 et la norme EN 55011

Lorsque les normes d'émissions génériques (transmises) sont utilisées, les variateurs de fréquence doivent être conformes aux limites définies dans le *Tableau 5.4* :

Environnement	Norme d'émission générique	Classe d'émission équivalente dans la norme EN 55011
Environnement premier (habitat et commerce)	Norme EN/CEI 61000-6-3 concernant les émissions dans les environnements résidentiels, commerciaux et	Classe B
	de l'industrie légère.	

Environnement	Norme d'émission générique	Classe d'émission équivalente dans la norme EN 55011
Environnement	Norme EN/CEI 61000-6-4	Classe A groupe
second	concernant les émissions	1
(environnement	dans les environnements	
industriel)	industriels.	

Tableau 5.4 Corrélation entre la norme d'émission générique et la norme EN 55011

5.2.3 Conditions d'immunité

Les conditions d'immunité des variateurs de fréquence dépendent de l'environnement dans lequel ils sont installés. Les exigences sont plus strictes pour l'environnement industriel que pour les environnements résidentiels et commerciaux. Tous les variateurs de fréquence Danfoss sont conformes aux exigences pour l'environnement industriel et par conséquent aux exigences moindres des environnements résidentiels et commerciaux, offrant ainsi une importante marge de sécurité.

Afin de pouvoir documenter l'immunité à l'égard d'interférences provenant de phénomènes de commutation électrique, les essais suivants d'immunité ont été réalisés conformément aux normes de base suivantes :

- EN 61000-4-2 (CEI 61000-4-2) : décharges électrostatiques (DES). Simulation de l'influence des décharges électrostatiques générées par le corps humain.
- EN 61000-4-3 (CEI 61000-4-3): champ électromagnétique rayonné à modulation d'amplitude: simulation de l'influence des radars, matériels de radiodiffusion et appareils de communication mobiles.
- EN 61000-4-4 (CEI 61000-4-4): rafales. Simulation d'interférences provoquées par un contacteur en ouverture, un relais ou un dispositif analogue.
- EN 61000-4-5 (CEI 61000-4-5): transitoires.
 Simulation de transitoires provoqués, par exemple, par la foudre dans des installations situées à proximité.
- EN 61000-4-6 (CEI 61000-4-6): mode commun RF. Simulation de l'effet d'équipement de transmission connecté par des câbles de raccordement.

Voir le par. Tableau 5.5.

Norme de base	Rafale CEI 61000-4-4	Surtension CEI 61000-4-5	Décharge électro-	Champ électromagnétique rayonné	Tension mode commun RF
			statique	CEI 61000-4-3	CEI 61000-4-6
			CEI		
			61000-4-2		
Critère d'acceptation	В	В	В	Α	Α
Plage de tension : 200-240 \	/, 380-500 V, 525-60	0 V, 525-690 V			
Ligne	4 kV CM	2 kV/2 Ω DM			10 V _{RMS}
	4 KV CIVI	4 kV/12 Ω CM	_	_	TO VRMS
Moteur	4 kV CM	4 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Frein	4 kV CM	4 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Répartition de la charge	4 kV CM	4 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Fils de commande	2 kV CM	2 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Bus standard	2 kV CM	2 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Fils du relais	2 kV CM	2 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Options d'application et de	2 kV CM	2 kV/2 Ω ¹⁾			10 V _{RMS}
bus de terrain		2 KV/2 12 '			10 VRIVIS
câble LCP	2 kV CM	2 kV/2 Ω ¹⁾	_	_	10 V _{RMS}
Alimentation externe	2 V CM	0,5 kV/2 Ω DM			10 V _{RMS}
24 V CC	2 V CIVI	1 kV/12 Ω CM			IO VRMS
Protection			8 kV AD	V AD 10 V/m	
	_ _		6 kV CD	10 4/111	_ _

Tableau 5.5 Schéma d'immunité CEM

5.2.4 Isolation du moteur

La conception moderne des moteurs à utiliser avec des variateurs de fréquence présente un niveau élevé d'isolation pour représenter la nouvelle génération d'IGBT haute fréquence avec un dU/dt élevé. Pour un réajustement sur des moteurs anciens, il est nécessaire de confirmer l'isolation du moteur ou d'atténuer avec un filtre dU/dt ou si nécessaire un filtre sinus. dU/dt

Pour les longueurs de câble du moteur ≤ à la longueur de câble répertoriée au *chapitre 6.2 Spécifications générales*, l'isolation du moteur recommandée est indiquée dans le *Tableau 5.6*. Si un moteur présente une valeur d'isolation nominale inférieure, il est conseillé d'utiliser un filtre du/dt ou sinus.

Tension secteur nominale [V]	Isolation du moteur [V]
$U_N \le 420$	U _{LL} standard = 1 300
$420 \text{ V} < U_{\text{N}} \le 500$	U _{LL} renforcée = 1 600
$500 \text{ V} < U_N \le 600$	U _{LL} renforcée = 1 800
$600 \text{ V} < U_{\text{N}} \le 690$	U _{LL} renforcée = 2 000

Tableau 5.6 Isolation du moteur

¹⁾ Injection sur blindage de câble

5.2.5 Courants des paliers de moteur

Pour minimiser les courants d'entraînement des paliers et des arbres, relier les éléments ci-dessous à la machine entraînée :

- le variateur de fréquence
- le moteur
- la machine entraînée
- le moteur

Stratégies d'atténuation standard

- 1. Utiliser un palier isolé.
- 2. Appliquer des procédures d'installation rigoureuses.
 - 2a Veiller à ce que le moteur et la charge moteur soient alignés.
 - 2b Respecter strictement la réglementation CEM.
 - 2c Renforcer le PE de façon à ce que l'impédance haute fréquence soit inférieure dans le PE aux fils d'alimentation d'entrée.
 - 2d Permettre une bonne connexion haute fréquence entre le moteur et le variateur de fréquence par exemple avec un câble armé muni d'un raccord à 360° dans le moteur et le variateur de fréquence.
 - Veiller à ce que l'impédance entre le variateur de fréquence et la mise à la terre soit inférieure à l'impédance de la mise à la terre de la machine. Cela peut s'avérer difficile pour les pompes.
 - 2f Procéder à une mise à la terre directe entre le moteur et la charge moteur.
- 3. Abaisser la fréquence de commutation de l'IGBT.
- Modifier la forme de l'onde de l'onduleur, 60° AVM au lieu de SFAVM.
- 5. Installer un système de mise à la terre de l'arbre ou utiliser un raccord isolant.
- 6. Appliquer un lubrifiant conducteur.
- Utiliser si possible des réglages minimum de la vitesse.
- 8. Veiller à ce que la tension de la ligne soit équilibrée jusqu'à la terre. Cela peut s'avérer difficile pour les réseaux IT, TT, TN-CS ou les systèmes de colonne mis à la terre.
- 9. Utiliser un filtre dU/dt ou sinus.

5.3 Perturbations alimentation secteur/ harmoniques

Un variateur de fréquence consomme un courant non sinusoïdal qui accroît le courant d'entrée I_{RMS} . Un courant non sinusoïdal peut être transformé à l'aide d'une analyse de Fourier en une somme de courants sinusoïdaux de fréquences différentes, c'est-à-dire en harmoniques de courant I_n différents dont la fréquence de base est égale à 50 Hz :

Harmoniques de courant	l ₁	l ₅	l ₇
Hz	50	250	350

Tableau 5.7 Courant non sinusoïdal transformé

Les harmoniques de courant ne contribuent pas directement à la consommation de puissance mais elles augmentent les pertes de chaleur de l'installation (transformateurs, câbles). De ce fait, dans les installations caractérisées par un pourcentage élevé de charges redressées, il convient de maintenir les harmoniques de courant à un niveau faible afin d'éviter la surcharge du transformateur et la surchauffe des câbles.

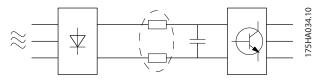


Illustration 5.4 Bobines du circuit intermédiaire

AVIS!

Certaines harmoniques de courant sont susceptibles de perturber les équipements de communication reliés au même transformateur ou de provoquer des résonances dans les connexions avec les unités de correction du facteur de puissance.

	Courant d'entrée
I _{RMS}	1,0
I ₁	0,9
I ₅	0,4
l ₇	0,2
I ₁₁₋₄₉	< 0,1

Tableau 5.8 Comparaison entre les harmoniques de courant et le courant d'entrée RMS

Pour produire des harmoniques de courant bas, le variateur de fréquence est doté en standard de bobines de circuit intermédiaire. Les bobines CC réduisent le taux d'harmoniques (THD) à 40 %.

5.3.1 Effet des harmoniques dans un système de distribution de puissance

Sur l'Illustration 5.5, un transformateur est connecté côté primaire à un point de couplage commun PCC1, sur l'alimentation en moyenne tension. Le transformateur présente une impédance Z_{xfr} et alimente un certain nombre de charges. Le point de couplage commun où toutes les charges sont connectées ensemble est PCC2. Chaque charge est connectée via des câbles présentant une impédance Z_1 , Z_2 , Z_3 .

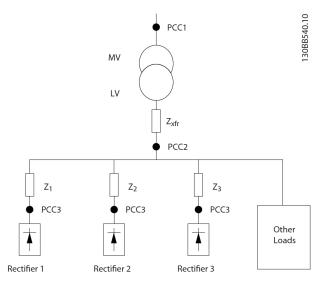


Illustration 5.5 Petit réseau de distribution

Les harmoniques de courant prélevées par des charges non linéaires provoquent une distorsion de la tension en raison de la baisse de cette dernière sur les impédances du réseau de distribution. Des impédances supérieures entraînent des niveaux plus élevés de distorsion de la tension.

La distorsion de courant est liée aux performances des appareils et à la charge individuelle. La distorsion de tension est quant à elle liée aux performances du système. Il est impossible de déterminer la distorsion de tension sur le PCC en ne connaissant que les performances d'harmoniques de la charge. Pour prévoir la distorsion sur le PCC, la configuration du système de distribution et les impédances associées doivent être identifiées.

Un terme couramment utilisé pour décrire l'impédance d'un réseau est le rapport de court-circuit R_{sce}, défini comme le rapport entre la puissance apparente du court-circuit de l'alimentation au point P_{CC} (S_{sc}) et la puissance apparente nominale de la charge (S_{equ}).

$$Rsce = \frac{Sce}{S\acute{e}qu}$$
Où $Ssc = \frac{U^2}{Zalimentation}$ et $S\acute{e}qu = U \times I\acute{e}qu$

L'effet négatif des harmoniques est double

- Les harmoniques de courant contribuent à des pertes système (dans le câblage, transformateur).
- La distorsion de tension des harmoniques entraîne des perturbations sur les autres charges et augmentent leurs pertes.

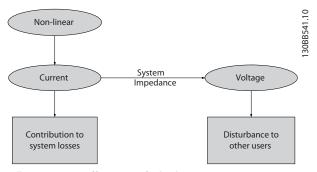


Illustration 5.6 Effets négatifs des harmoniques

5.3.2 Normes et exigences quant aux limites d'harmoniques

Les exigences relatives aux limites d'harmoniques peuvent être :

- des exigences spécifiques à l'application
- des normes à respecter

Les exigences spécifiques à l'application sont liées à une installation particulière où des raisons techniques limitent les harmoniques.

Exemple

Un transformateur de 250 kVA avec deux moteurs de 2 110 kW connectés est suffisant si l'un des moteurs est branché directement en ligne et que l'autre est alimenté via un variateur de fréquence. Cependant, le transformateur est sous-dimensionné si les deux moteurs sont alimentés par variateur de fréquence. L'utilisation de moyens supplémentaires pour réduire les harmoniques dans l'installation ou le choix de variantes de variateur à charge harmonique faible permet le fonctionnement des deux moteurs avec des variateurs de fréquence.

Il existe diverses normes, réglementations et recommandations pour atténuer les harmoniques. Différentes normes s'appliquent dans des zones géographiques et des industries variées. Les normes suivantes sont les plus courantes :

- IFC61000-3-2
- IEC61000-3-12
- IEC61000-3-4
- IEEE 519
- G5/4

Voir le *Manuel de configuration de* l'AHF 005/010 pour obtenir les détails spécifiques à chaque norme.

En Europe, le THVD maximum est de 8 % si l'installation est connectée via le réseau public. Si l'installation dispose de son propre transformateur, la limite du THVD est de 10 %. Le VLT[®] AutomationDrive a été conçu pour supporter un THVD de 10 %.

5.3.3 Atténuation des harmoniques

Lorsqu'une suppression supplémentaire des harmoniques est nécessaire, Danfoss propose une large gamme de matériel d'atténuation. Voici ces équipements :

- variateurs à 12 impulsions,
- filtres AHF
- variateurs à charge harmonique faible,
- Filtres actifs

Le choix de la solution appropriée dépend de plusieurs facteurs :

- réseau (distorsion de fond, déséquilibre du réseau, résonance et type d'alimentation (transformateur/générateur));
- application (profil, nombre et taille des charges);
- exigences/réglementations locales/nationales (IEEE519, CEI, G5/4, etc.);
- coût total de propriété (coûts initiaux, rendement, maintenance, etc.).

Toujours envisager une atténuation des harmoniques si la charge du transformateur présente une contribution non linéaire d'au moins 40 %.

5.3.4 Calcul d'harmoniques

Danfoss propose des outils de calcul des harmoniques (voir le *chapitre 9.6.5 Logiciel PC*).

5.4 Isolation galvanique (PELV)

5.4.1 PELV - Protective Extra Low Voltage

La norme PELV offre une protection grâce à une tension extrêmement basse. La protection contre l'électrocution est assurée lorsque l'alimentation électrique est de type PELV et que l'installation est réalisée selon les dispositions des réglementations locales et nationales concernant les alimentations PELV.

Toutes les bornes de commande et de relais 01-03/04-06 sont conformes à la norme PELV (Protective Extra Low Voltage) à l'exception des unités au sol sur trépied supérieures à 400 V.

L'isolation galvanique est obtenue en respectant les exigences en matière d'isolation renforcée avec les lignes de fuite et les distances correspondantes. Ces exigences sont décrites dans la norme EN 61800-5-1.

Les composants qui forment l'isolation électrique décrite ci-dessous répondent également aux exigences en matière d'isolation renforcée avec les essais correspondants décrits dans la norme EN 61800-5-1.

L'isolation galvanique PELV existe à six endroits (voir l'Illustration 5.7):

Pour conserver l'isolation PELV, toutes les connexions réalisées sur les bornes de commande doivent être de type PELV : la thermistance doit être à isolation double/renforcée.

- Alimentation (SMPS) comprenant une isolation de signaux du circuit intermédiaire.
- 2. Pilotage des IGBT par transformateurs d'impulsions/coupleurs optoélectroniques.
- 3. Transformateurs de courant.
- 4. Coupleur optoélectronique, module de freinage.
- 5. Courant d'appel interne, RFI et circuits de mesure de la température.
- 6. Relais personnalisés.
- 7. Frein mécanique.

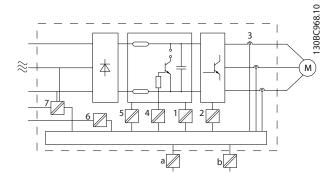


Illustration 5.7 Isolation galvanique

L'isolation galvanique fonctionnelle (a et b sur le schéma) est destinée à l'option de secours 24 V et à l'interface du bus standard RS-485.

AAVERTISSEMENT

Installation à haute altitude :

À des altitudes supérieures à 2 000 m, merci de contacter Danfoss en ce qui concerne la norme PELV.

▲AVERTISSEMENT

Tout contact avec les pièces électriques, même après la mise hors tension de l'appareil, peut entraîner des blessures graves voire mortelles.

Veiller également à déconnecter d'autres entrées de tension, par exemple la répartition de charge (connexion de circuit intermédiaire CC) et le raccordement du moteur en cas de sauvegarde cinétique.

Avant de toucher une pièce électrique, patienter au moins le temps indiqué dans le *Tableau 2.1*. Un délai plus court est autorisé uniquement s'il est indiqué sur la plaque signalétique de l'unité spécifique.

5.5 Fonctions de freinage

La fonction de freinage est utilisée pour freiner la charge sur l'arbre du moteur, par freinage dynamique ou mécanique.

5.5.1 Sélection de la résistance de freinage

La résistance de freinage garantit que l'énergie est absorbée par celle-ci et non par le variateur de fréquence. Pour plus d'informations, consulter le *Manuel de configu*ration de la résistance de freinage.

Si la quantité d'énergie cinétique transférée à la résistance à chaque période de freinage est inconnue, la puissance moyenne peut être calculée à partir du temps de cycle et du temps de freinage également appelé cycle d'utilisation intermittent. Le cycle d'utilisation intermittent de la résistance indique le cycle d'utilisation pendant lequel la résistance est active. L'Illustration 5.8 représente un cycle de freinage typique.

AVIS!

Les fournisseurs de moteurs utilisent souvent S5 pour indiquer la charge autorisée qui correspond au cycle d'utilisation intermittent.

Le cycle d'utilisation intermittent de la résistance est calculé comme suit :

Cycle d'utilisation = t_b/T

T= temps de cycle en secondes t_b est le temps de freinage en secondes (du temps de cycle)

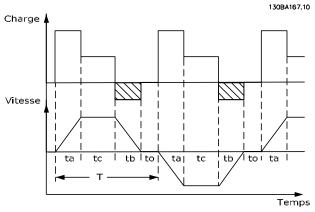


Illustration 5.8 Cycle de freinage type

	Durée du cycle (s)	Cycle d'utilisation du freinage au couple de 100 %	Cycle d'utili- sation du freinage en surcouple (150/160 %)
200-240 V			
PK25-P11K	120	Continu	40%
P15K-P37K	300	10%	10%
380-500 V	•		
PK37-P75K	120	Continu	40%
P90K-P160	600	Continu	10%
P200-P800	600	40%	10%
525-600 V	•		
PK75-P75K	120	Continu	40%
525-690 V	•		
P37K-P400	600	40%	10%
P500-P560	600	40% 1)	10% 2)
P630-P1M0	600	40%	10%

Tableau 5.9 Freinage à un niveau de surcouple élevé

1) 500 kW au couple de freinage de 86 %/560 kW au couple de freinage de 76 %

2) 500 kW au couple de freinage de 130 %/560 kW au couple de freinage de 115 %

Danfoss propose des résistances de freinage avec des cycles d'utilisation de 5 %, 10 % et 40 %. Si un cycle d'utilisation de 10 % est appliqué, les résistances de freinage sont capables d'absorber la puissance de freinage pendant 10 % du temps du cycle. Les 90 % restants du temps de cycle sont utilisés pour évacuer la chaleur excédentaire.

AVIS!

Vérifier que la résistance est conçue pour gérer le temps de freinage requis.

La charge maximale autorisée pour la résistance de freinage est indiquée comme une puissance de pointe à un cycle d'utilisation intermittent donné et peut être calculée comme suit :

$$ED (cycle \ d'utilisation) = \frac{tb}{cycle \ T}$$

où tb correspond au temps de freinage en secondes et Tcycle au temps total du cycle.

La valeur de la résistance de freinage est calculée comme suit :

$$Rfr\left[\Omega\right] = \frac{U_{cc}^2}{Ppointe}$$

0

 $P_{pointe} = P_{moteur} x M_{br} [\%] x \eta_{moteur} x \eta_{VLT}[W]$

La résistance de freinage dépend de la tension du circuit intermédiaire (U_{cc}).

La fonction de freinage des FC 301 et FC 302 est définie dans 4 zones de secteur.

Taille	Frein activé	Avertis-	Coupure
		sement avant	(arrêt
		coupure	verrouillé)
FC 301/FC 302	390 V	405 V	410 V
200-240 V			
FC 301 380-480 V	778 V	810 V	820 V
FC 302 380-500 V	810 V	840 V	850 V
FC 302 525-600 V	943 V	965 V	975 V
FC 302 525-690 V	1084 V	1 109 V	1 130 V

Tableau 5.10 Limites de freinage [UCC]

AVIS!

Vérifier que la résistance de freinage peut supporter une tension de 410 V, 820 V, 850 V, 975 V ou 1 130 V - à moins que des résistances de freinage Danfoss soient utilisées.

 R_{rec} est la résistance de freinage recommandée par Danfoss, en d'autres termes celle qui garantit que le variateur de fréquence peut freiner au couple de freinage le plus élevé ($M_{fr(\%)}$) de 160 %. La formule suivante peut être écrite :

$$R_{rec}\left[\Omega\right] = \frac{U_{cc}^{2} \times 100}{P_{moteur} \times Mfr\left(\%\right) \times \eta_{VLT} \times \eta_{moteur}}$$

La valeur typique de n_{moteur} est de 0,90 La valeur typique de n_{VARIATEUR} est de 0,98

Pour les variateurs de fréquence 200 V, 480 V, 500 V et 600 V, R_{rec} à un couple de freinage de 160 % s'écrit comme suit :

$$200 \ V : \textit{Rrec} = \frac{107780}{\textit{Ple moteur}} \ [\Omega]$$

$$480 \ V : \textit{Rrec} = \frac{375300}{\textit{Ple moteur}} \ [\Omega] \ 1)$$

$$480 \ V : \textit{Rrec} = \frac{428914}{\textit{Ple moteur}} \ [\Omega] \ 2)$$

$$500 \ V : \textit{Rrec} = \frac{464923}{\textit{Ple moteur}} \ [\Omega]$$

$$600 \ V : \textit{Rrec} = \frac{630137}{\textit{Ple moteur}} \ [\Omega]$$

$$690 \ V : \textit{Rrec} = \frac{832664}{\textit{Ple moteur}} \ [\Omega]$$

AVIS!

La résistance du circuit de freinage choisie ne doit pas être supérieure à celle recommandée par Danfoss. En sélectionnant une résistance de valeur ohmique supérieure, il est possible que l'on n'obtienne pas un couple de freinage de 160 % puisque le variateur de fréquence risque de disjoncter par mesure de sécurité.

AVIS!

En cas de court-circuit dans le transistor de freinage, on empêche la dissipation de puissance dans la résistance uniquement en utilisant un interrupteur de secteur ou un contacteur afin de déconnecter le variateur de fréquence du secteur. (Le contacteur peut être commandé par le variateur de fréquence.)

AATTENTION

La résistance de freinage chauffe pendant et après le freinage.

- Pour éviter toute blessure, ne pas toucher la résistance de freinage.
- Placer la résistance de freinage dans un environnement sûr pour éviter tout risque d'incendie.

AATTENTION

Les variateurs de fréquence de types D-F contiennent plusieurs hacheurs de freinage. Utiliser par conséquent une résistance de freinage par hacheur de freinage pour ces types de protection.

5.5.2 Câblage de la résistance de freinage

CEM (câbles torsadés/blindage)

Pour répondre aux normes de performance CEM spécifiées du variateur de fréquence, utiliser des câbles/fils blindés. Si des fils non blindés sont utilisés, il est recommandé de torsader les fils pour réduire le bruit électrique émis par ces derniers entre la résistance de freinage et le variateur de fréquence.

Pour une performance CEM améliorée, utiliser un blindage métallique.

5.5.3 Contrôle avec la fonction de freinage

Le frein est protégé contre les courts-circuits de la résistance de freinage. D'autre part, le transistor de freinage est contrôlé de manière à garantir la détection du court-circuit du transistor. Il est possible d'utiliser une sortie relais/digitale pour protéger la résistance de freinage contre la surcharge en relation avec une panne du variateur de fréquence.

Le frein permet également d'afficher la puissance instantanée et la puissance moyenne des 120 dernières secondes et de veiller à ce que la puissance dégagée ne dépasse pas la limite fixée par l'intermédiaire du par. 2-12 P. kW Frein Res. Au par. 2-13 Frein Res Therm, sélectionner la fonction à exécuter lorsque la puissance transmise à la résistance de freinage dépasse la limite définie au par. 2-12 P. kW Frein Res.

AVIS!

La surveillance de la puissance de freinage n'est pas une fonction de sécurité, cette dernière nécessitant un thermocontact. La résistance de freinage n'est pas protégée contre les fuites à la terre.

Le contrôle de surtension (OVC) (à l'exclusion de la résistance de freinage) peut être sélectionné comme fonction de freinage de remplacement au par. 2-17 Contrôle Surtension. Cette fonction est active pour toutes les unités et permet d'éviter un arrêt si la tension du circuit intermédiaire augmente. Elle génère une augmentation de la fréquence de sortie pour limiter la tension du circuit intermédiaire. Cette fonction est utile car elle évite l'arrêt du variateur de fréquence, si la durée de descente de rampe est trop courte par exemple. Dans cette situation, la rampe de décélération est prolongée.

AVIS!

L'OVC ne peut pas être activé lors du fonctionnement d'un moteur PM (si le par. 1-10 Construction moteur est réglé sur [1] PM, SPM non saillant).

Pour les variateurs de fréquence ≤ 7,5 kW à la sortie d'arbre
 Pour les variateurs de fréquence de 11-75 kW à la sortie d'arbre

6 Spécifications du produit

6.1 Données électriques

6.1.1 Alimentation secteur 200-240 V

Désignation du type	PK25	PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K0	P3K7	
Sortie d'arbre typique [kW]	0,25	0,37	0,55	0,75	1,1	1,5	2,2	3,0	3,7	
Protection IP20 (FC 301 uniquement)	A1	A1	A1	A1	A1	A1	-	-	-	
Protection IP20/IP21	A2	A2	A2	A2	A2	A2	A2	А3	А3	
Protection IP55, IP66	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A5	A5	
Courant de sortie										
Continu (200-240 V) [A]	1,8	2,4	3,5	4,6	6,6	7,5	10,6	12,5	16,7	
Intermittent (200-240 V) [A]	2,9	3,8	5,6	7,4	10,6	12,0	17,0	20,0	26,7	
KVA continu (208 V) [kVA]	0,65	0,86	1,26	1,66	2,38	2,70	3,82	4,50	6,00	
Courant d'entrée max.										
Continu (200-240 V) [A]	1,6	2,2	3,2	4,1	5,9	6,8	9,5	11,3	15,0	
Intermittent (200-240 V) [A]	2,6	3,5	5,1	6,6	9,4	10,9	15,2	18,1	24,0	
Spécifications supplémentaires										
Section max. de câble ⁴⁾ pour secteur, moteur,				4, 4,	4 (12, 12,	12)				
frein et répartition de la charge [mm²] ([AWG])				(m	in. 0,2 (24))				
Section max. de câble ⁴⁾ pour sectionneur					4 (10 12 1	2)				
[mm ²] ([AWG])				0,4	,4 (10,12,1	2)				
Perte de puissance estimée à charge nominale	21	20	42	EA	62	92	116	155	105	
max. [W] ³⁾	21	29	42	54	63	82	116	155	185	
Rendement ²⁾	0,94	0,94	0,95	0,95	0,96	0,96	0,96	0,96	0,96	

Tableau 6.1 Alimentation secteur 200-240 V, PK25-P3K7

Désignation du type	P5K5		P7	K5	P11K	
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN
Sortie d'arbre typique [kW]	5,5	7,5	7,5	11	11	15
Protection IP20	B3		В	3	E	34
Protection IP21, IP55, IP66	B1		В	1	E	32
Courant de sortie				_		
Continu (200-240 V) [A]	24,2	30,8	30,8	46,2	46,2	59,4
Intermittent (surcharge de 60 s) (200-240 V) [A]	38,7 33,9		49,3	50,8	73,9	65,3
KVA continu (208 V) [kVA]	8,7	11,1	11,1	16,6	16,6	21,4
Courant d'entrée max.						
Continu (200-240 V) [A]	22,0	28,0	28,0	42,0	42,0	54,0
Intermittent (surcharge de 60 s) (200-240 V) [A]	35,2	30,8	44,8	46,2	67,2	59,4
Spécifications supplémentaires						
IP20, section max. de câble ⁴⁾ pour secteur, frein, moteur et	10 10 -	(8,8,-)	10.10.	- (8,8,-)	35	(2,-,-)
répartition de la charge [mm²] ([AWG])	10,10,-	(0,0,-)	10,10,	(0,0,-)	35,-,-	(2,-,-)
Section max. de câble IP21 ⁴⁾ pour secteur, frein, répartition de la	16 10 1	(6.0.6)	16,10,16 (6,8,6)		25	(2)
charge [mm²] ([AWG])	10,10,10	5 (6,8,6)	10,10,1	0 (0,0,0)	35,-,-	(2,-,-)
Section max. de câble IP21 ⁴⁾ pour moteur [mm ²] ([AWG])	10,10,-	(8,8,-)	10,10,-	- (8,8,-)	35,25,2	5 (2,4,4)
Section max. de câble ⁴⁾ pour sectionneur [mm ²] ([AWG])			16,10,10 (6,8,8)		
Perte de puissance estimée à charge nominale max. [W] ³⁾	239	310	371	514	463	602
Rendement ²⁾	0,96		0,	96	0,96	

Tableau 6.2 Alimentation secteur 200-240 V, P5K5-P11K

Désignation du type	P1	5K	P1	8K	P2	2K	P3	ок	P37K		
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	SE	SN	
Sortie d'arbre typique [kW]	15	18,5	18,5	22	22	30	30	37	37	45	
Protection IP20	B4		C	3	C3		C	4	C4		
Protection IP21, IP55, IP66	C	1	C	1	C	1	C	2	С	2	
Courant de sortie									-		
Continu (200-240 V) [A]	59,4	74,8	74,8	88,0	88,0	115	115	143	143	170	
Intermittent (surcharge de 60 s) (200-240 V) [A]	89,1	82,3	112	96,8	132	127	173	157	215	187	
KVA continu (208 V) [kVA]	21,4	26,9	26,9	31,7	31,7	41,4	41,4	51,5	51,5	61,2	
Courant d'entrée max.									_		
Continu (200-240 V) [A]	54,0	68,0	68,0	80,0	80,0	104	104	130	130	154	
Intermittent (surcharge de 60 s) (200-240 V) [A]	81,0	74,8	102	88,0	120	114	156	143	195	169	
Spécifications supplémentaires		-				-		-			
IP20, section max. de câble pour secteur, frein,											
moteur et répartition de la charge	35	(2)	50 (1)		50 (1)		150 (300 MCM)		150 (300 MCM)		
[mm ²] ([AWG])											
Section max. de câble IP21, IP55, IP66 pour	50	(1)	50	(1)	F0	(1)	150 (20	0 MCM)	150 (300 MCM)		
secteur et moteur [mm²] ([AWG])	30	(1)	50	(1)	50	(1)	130 (30	O MICIVI)	130 (300) IVICIVI)	
Section max. de câble IP21, IP55, IP66 pour frein		(1)	50	(1)	50	(1)	05 /	2 (0)	05 (2 (0)	
et répartition de la charge [mm²] ([AWG])	50	(1)	50	(1)	50	(1)	95 (3/0)	95 (3/0)	
Section max. de câble ⁴⁾ pour sectionneur					,		05.7	0, 70	185, 15	50, 120	
[mm²] ([AWG])			50, 35, 3	5 (1, 2, 2))		· ·	•	(350	мсм,	
[mm-] ([AWG])							(3/0, 2/0, 2/0)		300 MCM, 4/0)		
Perte de puissance estimée à charge nominale	624	737	740	845	874	1140	1143	1353	1400	1636	
max. [W] ³⁾	024	/3/	740	043	0/4	1140	1143	1333	1400	1030	
Rendement ²⁾	0,9	96	0,	97	0,9	97	0,	0,97		0,97	

Tableau 6.3 Alimentation secteur 200-240 V, P15K-P37K

6.1.2 Alimentation 380-500 V

Désignation du type	PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K0	P4K0	P5K5	P7K5
Sortie d'arbre typique [kW]	0,37	0,55	0,75	1,1	1,5	2,2	3,0	4,0	5,5	7,5
Protection IP20 (FC 301 uniquement)	A1	A1	A1	A1	A1	-	-	-	-	
Protection IP20/IP21	A2	A2	A2	A2	A2	A2	A2	A2	А3	A3
Protection IP55, IP66	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A5	A5
Courant de sortie Surcharge élevée de 160 % p	endant 1	minute								
Sortie d'arbre [kW]	0,37	0,55	0,75	1,1	1,5	2,2	3	4	5,5	7,5
Continu (380-440 V) [A]	1,3	1,8	2,4	3,0	4,1	5,6	7,2	10	13	16
Intermittent (380-440 V) [A]	2,1	2,9	3,8	4,8	6,6	9,0	11,5	16	20,8	25,6
Continu (441-500 V) [A]	1,2	1,6	2,1	2,7	3,4	4,8	6,3	8,2	11	14,5
Intermittent (441-500 V) [A]	1,9	2,6	3,4	4,3	5,4	7,7	10,1	13,1	17,6	23,2
KVA continu (400 V) [kVA]	0,9	1,3	1,7	2,1	2,8	3,9	5,0	6,9	9,0	11
KVA continu (460 V) [kVA]	0,9	1,3	1,7	2,4	2,7	3,8	5,0	6,5	8,8	11,6
Courant d'entrée max.										
Continu (380-440 V) [A]	1,2	1,6	2,2	2,7	3,7	5,0	6,5	9,0	11,7	14,4
Intermittent (380-440 V) [A]	1,9	2,6	3,5	4,3	5,9	8,0	10,4	14,4	18,7	23
Continu (441-500 V) [A]	1,0	1,4	1,9	2,7	3,1	4,3	5,7	7,4	9,9	13
Intermittent (441-500 V) [A]	1,6	2,2	3,0	4,3	5,0	6,9	9,1	11,8	15,8	20,8
Spécifications supplémentaires										
IP20, IP21, section max. de câble ⁴⁾ pour secteur,				4	4, 4 (12,	12 12\				
moteur, frein et répartition de la charge				4,	(min. 0,2					
[mm ²] ([AWG])					(111111. 0,2	(24))				
IP55, IP66, section max. de câble ⁴⁾ pour secteur,										
moteur, frein et répartition de la charge					4,4,4 (12,	12,12)				
[mm ²] ([AWG])										
Section max. de câble ⁴⁾ pour sectionneur					6 4 4 (10 :	12 12)				
[mm²] ([AWG])	6,4,4 (10,12,12)									
Perte de puissance estimée à charge nominale	35	42	46	58	62	00	116	124	107	255
max. [W] ³⁾	33	42	40	58	62	88	116	124	187	255
Rendement ²⁾	0,93	0,95	0,96	0,96	0,97	0,97	0,97	0,97	0,97	0,97

Tableau 6.4 Alimentation 380-500 V (FC 302), 380-480 V (FC 301), PK37-P7K5

Désignation du type	P1	1K	P1	5K	P18K		P22K		
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	
Sortie d'arbre typique [kW]	11	15	15	18,5	18,5	22,0	22,0	30,0	
Protection IP20	E	33	В	3	B4		Е	34	
Protection IP21	E	31	В	1 1	B2		B2		
Protection IP55, IP66	Е	31	B1		B2		Е	32	
Courant de sortie									
Continu (380-440 V) [A]	24	32	32	37,5	37,5	44	44	61	
Intermittent (surcharge de 60 s) (380-440 V) [A]	38,4	35,2	51,2	41,3	60	48,4	70,4	67,1	
Continu (441-500 V) [A]	21	27	27	34	34	40	40	52	
Intermittent (surcharge de 60 s) (441-500 V) [A]	33,6	29,7	43,2	37,4	54,4	44	64	57,2	
KVA continu (400 V) [kVA]	16,6	22,2	22,2	26	26	30,5	30,5	42,3	
KVA continu (460 V) [kVA]		21,5		27,1		31,9		41,4	
Courant d'entrée max.		•	•	•	•		•		
Continu (380-440 V) [A]	22	29	29	34	34	40	40	55	
Intermittent (surcharge de 60 s) (380-440 V) [A]	35,2	31,9	46,4	37,4	54,4	44	64	60,5	
Continu (441-500 V) [A]	19	25	25	31	31	36	36	47	
Intermittent (surcharge de 60 s) (441-500 V) [A]	30,4	27,5	40	34,1	49,6	39,6	57,6	51,7	
Spécifications supplémentaires									
Section max. de câble IP21, IP55, IP66 ⁴⁾ pour secteur, frein et répartition de la charge [mm ²] ([AWG])	16, 10, 1	6 (6, 8, 6)	16, 10, 10	16, 10, 16 (6, 8, 6)		35,-,-(2,-,-)		·(2,-,-)	
Section max. de câble IP21, IP55, IP66 ⁴⁾ pour moteur [mm²] ([AWG])	10, 10,	- (8, 8,-)	10, 10,	- (8, 8,-)	35, 25, 2	25 (2, 4, 4)	35, 25, 2	5 (2, 4, 4)	
IP20, section max. de câble ⁴⁾ pour secteur, frein, moteur et répartition de la charge [mm ²] ([AWG])	10, 10,- (8, 8,-)		10, 10,	10, 10,- (8, 8,-)		35,-,-(2,-,-)		(2,-,-)	
Section max. de câble ⁴⁾ pour sectionneur [mm ²] ([AWG])				16, 10, 10 (6, 8, 8)				
Perte de puissance estimée à charge nominale max. [W] ³⁾	291	392	379	465	444	525	547	739	
Rendement ²⁾	0,	98	0,	98	0,	,98	0,98		

Tableau 6.5 Alimentation 380-500 V (FC 302), 380-480 V (FC 301), P11K-P22K

Désignation du type	P3	ОК	P3	7K	P4	15K	P5	5K	P7	'5K	
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	SE	SN	
Sortie d'arbre typique [kW]	30	37	37	45	45	55	55	75	75	90	
Protection IP21	C	1	C	C1		C1		C2		C2	
Protection IP20	В	4	C3		C3		C4		C4		
Protection IP55, IP66	C1		С	1	(<u> </u>	C	2	C2		
Courant de sortie			•				•				
Continu (380-440 V) [A]	61	73	73	90	90	106	106	147	147	177	
Intermittent (surcharge de 60 s) (380-440 V) [A]	91,5	80,3	110	99	135	117	159	162	221	195	
Continu (441-500 V) [A]	52	65	65	80	80	105	105	130	130	160	
Intermittent (surcharge de 60 s) (441-500 V) [A]	78	71,5	97,5	88	120	116	158	143	195	176	
KVA continu (400 V) [kVA]	42,3	50,6	50,6	62,4	62,4	73,4	73,4	102	102	123	
KVA continu (460 V) [kVA]		51,8		63,7		83,7		104		128	
Courant d'entrée max.				•							
Continu (380-440 V) [A]	55	66	66	82	82	96	96	133	133	161	
Intermittent (surcharge de 60 s) (380-440 V) [A]	82,5	72,6	99	90,2	123	106	144	146	200	177	
Continu (441-500 V) [A]	47	59	59	73	73	95	95	118	118	145	
Intermittent (surcharge de 60 s) (441-500 V) [A]	70,5	64,9	88,5	80,3	110	105	143	130	177	160	
Spécifications supplémentaires		<u>I</u>	<u>I</u>				!	Į.			
IP20, section max. de câble pour secteur et moteur [mm²] ([AWG])	35	(2)	50	(1)	50 (1)		150 (300 MCM)		150 (300 MCM)		
IP20, section max. de câble pour frein et répartition de la charge [mm²] ([AWG])	35	(2)	50	(1)	50	(1)	95 (4/0)	95 ((4/0)	
Section max. de câble IP21, IP55, IP66 pour secteur et moteur [mm²] ([AWG])	50	(1)	50	(1)	50	(1)	150 (30	0 MCM)	150 (300 MCM)		
Section max. de câble IP21, IP55, IP66 pour frein et répartition de la charge [mm²] ([AWG])	50	(1)	50	(1)	50	(1)	95 (3/0)	95 ((3/0)	
Section max. de câble ⁴⁾ pour sectionneur [mm ²] ([AWG])			50, 35, 35 (1, 2, 2)					95, 70, 70 (3/0, 2/0, 2/0)		185, 150, 120 (350 MCM, 300 MCM, 4/0)	
Perte de puissance estimée à charge nominale max. [W] ³⁾	570	698	697	843	891	1083	1022	1022 1384		1474	
Rendement ²⁾	0,	98	0,9	98	0,	,98	0,9	98	0,99		

Tableau 6.6 Alimentation secteur 380-500 V (FC 302), 380-480 V (FC 301), P30K-P75K

6.1.3 Alimentation secteur 525-600 V (FC 302 uniquement)

Désignation du type	PK75	P1K1	P1K5	P2K2	P3K0	P4K0	P5K5	P7K5
Sortie d'arbre typique [kW]	0,75	1,1	1,5	2,2	3	4	5,5	7,5
Protection IP20, IP21	A3	A3	A3	A3	A3	A3	A3	А3
Protection IP55	A5	A5	A5	A5	A5	A5	A5	A5
Courant de sortie		•						
(Continu 525-550 V) [A]	1,8	2,6	2,9	4,1	5,2	6,4	9,5	11,5
Intermittent (525-550 V) [A]	2,9	4,2	4,6	6,6	8,3	10,2	15,2	18,4
Continu (551-600 V) [A]	1,7	2,4	2,7	3,9	4,9	6,1	9,0	11,0
Intermittent (551-600 V) [A]	2,7	3,8	4,3	6,2	7,8	9,8	14,4	17,6
KVA continu (525 V) [kVA]	1,7	2,5	2,8	3,9	5,0	6,1	9,0	11,0
KVA continu (575 V) [kVA]	1,7	2,4	2,7	3,9	4,9	6,1	9,0	11,0
Courant d'entrée max.	•							
Continu (525-600 V) [A]	1,7	2,4	2,7	4,1	5,2	5,8	8,6	10,4
Intermittent (525-600 V) [A]	2,7	3,8	4,3	6,6	8,3	9,3	13,8	16,6
Spécifications supplémentaires								
Section max. de câble ⁴⁾ pour secteur, moteur,				4, 4, 4 (1	2, 12, 12)			
frein et répartition de la charge [mm²] ([AWG])				(min. 0	,2 (24))			
Section max. de câble ⁴⁾ pour sectionneur								
[mm²] ([AWG])				6,4,4 (1	0,12,12)			
Perte de puissance estimée à charge nominale	25	F0	65	02	122	145	105	261
max. [W] ³⁾	35	50	65	92	122	145	195	261
Rendement ²⁾	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97

Tableau 6.7 Alimentation secteur 525-600 V (FC 302 uniquement), PK75-P7K5

Danfoss

Désignation du type	P1	1K	P1	5K	P18	3K	P2	2K	P3	0K
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	SE	SN
Sortie d'arbre typique [kW]	11	15	15	18,5	18,5	22	22	30	30	37
Protection IP20	Е	33	В3		B4	B4		B4		4
Protection IP21, IP55, IP66	B1 B1		B2	2	В	32	C1			
Courant de sortie	'				•					
(Continu 525-550 V) [A]	19	23	23	28	28	36	36	43	43	54
Intermittent (525-550 V) [A]	30	25	37	31	45	40	58	47	65	59
Continu (551-600 V) [A]	18	22	22	27	27	34	34	41	41	52
Intermittent (551-600 V) [A]	29	24	35	30	43	37	54	45	62	57
KVA continu (550 V) [kVA]	18,1	21,9	21,9	26,7	26,7	34,3	34,3	41,0	41,0	51,4
KVA continu (575 V) [kVA]	17,9	21,9	21,9	26,9	26,9	33,9	33,9	40,8	40,8	51,8
Courant d'entrée max.	•									
Continu à 550 V [A]	17,2	20,9	20,9	25,4	25,4	32,7	32,7	39	39	49
Intermittent à 550 V [A]	28	23	33	28	41	36	52	43	59	54
Continu à 575 V [A]	16	20	20	24	24	31	31	37	37	47
Intermittent à 575 V [A]	26	22	32	27	39	34	50	41	56	52
Spécifications supplémentaires	•	•			•	•				•
IP20, section max. de câble ⁴⁾ pour										
secteur, frein, moteur et répartition	10, 10,	- (8, 8,-)	10, 10,- (8, 8,-)		35,-,-(2,-,-)		35,-,-(2,-,-)		35,-,-(2,-,-)	
de la charge [mm²] ([AWG])										
Section max. de câble IP21, IP55,										
IP66 ⁴⁾ pour secteur, frein et	16 10 1	0 (6, 8, 8)	16 10 1	0 (6 8 8)	35,-,-()	35	(2,-,-)	50,-,-	(1)
répartition de la charge	10, 10, 1	0 (0, 0, 0)	10, 10, 1	0 (0, 0, 0)	33,-,-(, ∠ ,-,-)	33,-,-	(2,-,-)	30,-,-	(1,-,-)
[mm ²] ([AWG])										
Section max. de câble IP21, IP55,	10 10	- (8, 8,-)	10 10	- (8, 8,-)	35, 25, 25	(2 4 4)	35, 25, 2	5 (2 4 4)	50,-,-	(1)
IP66 ⁴⁾ pour moteur [mm ²] ([AWG])	10, 10,	(0, 0,)	10, 10,	(0, 0,)	33, 23, 23	(2, 7, 7)	33, 23, 2.	J (Z, ¬, ¬)	30, ,	(1,,)
Section max. de câble ⁴⁾ pour				16,	10, 10				50, 3	5, 35
sectionneur [mm²] ([AWG])				(6,	8, 8)				(1, 2	2, 2)
Perte de puissance estimée	220	300	300	370	370	440	440	600	600	740
à charge nominale max. [W] ³⁾	220	300	300	3/0	3/0	440	7710	000		/+0
Rendement ²⁾	0,	98	0,	98	0,9	98	0,	98	0,98	

Tableau 6.8 Alimentation secteur 525-600 V (FC 302 uniquement), P11K-P30K

Désignation du type	P3	7K	P4	5K	P5	5K	P75K	
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN
Sortie d'arbre typique [kW]	37	45	45	55	55	75	75	90
Protection IP20	C3	C3	C	.3	С	C4		4
Protection IP21, IP55, IP66	C1	C1	C	.1	С	2	C2	
Courant de sortie		•			•			
(Continu 525-550 V) [A]	54	65	65	87	87	105	105	137
Intermittent (525-550 V) [A]	81	72	98	96	131	116	158	151
Continu (551-600 V) [A]	52	62	62	83	83	100	100	131
Intermittent (551-600 V) [A]	78	68	93	91	125	110	150	144
KVA continu (550 V) [kVA]	51,4	61,9	61,9	82,9	82,9	100,0	100,0	130,5
KVA continu (575 V) [kVA]	51,8	61,7	61,7	82,7	82,7	99,6	99,6	130,5
Courant d'entrée max.								,
Continu à 550 V [A]	49	59	59	78,9	78,9	95,3	95,3	124,3
Intermittent à 550 V [A]	74	65	89	87	118	105	143	137
Continu à 575 V [A]	47	56	56	75	75	91	91	119
Intermittent à 575 V [A]	70	62	85	83	113	100	137	131
Spécifications supplémentaires				-		-		
IP20, section max. de câble pour secteur et moteur		50 (11)			150 (20	0 MCM)	
[mm²] ([AWG])		30 ((1)			130 (30	O IVICIVI)	
IP20, section max. de câble pour frein et répartition de		50 (11)			05 /	(4/0)	
la charge [mm²] ([AWG])		30 ((1)			93 ((4/0)	
Section max. de câble IP21, IP55, IP66 pour secteur et		50 (1)			150 (30	0 MCM)	
moteur [mm²] ([AWG])		50 (. 1)			150 (50	O IVICIVI)	
Section max. de câble IP21, IP55, IP66 pour frein et		50 (1)			05 /	(4/0)	
répartition de la charge [mm²] ([AWG])		50 (, 1)			95 ((4/0)	
Section max. de câble ⁴⁾ pour sectionneur		50 35	35		95, 7	0 70	185, 15	50, 120
[mm²] ([AWG])	50, 35, 35 (1, 2, 2)				(3/0, 2/	•	(350 I	MCM,
		(1, 2,	-/		(3/ 0/ 2/	J, 2, 0,	300 MCM, 4/0)	
Perte de puissance estimée à charge nominale max.	740	900	900	1100	1100	1500	1500	1800
[W] ³⁾	, 10			1100	1100	1300		
Rendement ²⁾	0,9	98	0,	98	0,9	98	0,9	98

Tableau 6.9 Alimentation secteur 525-600 V (FC 302 uniquement), P37K-P75K

6.1.4 Alimentation secteur 525-690 V (FC 302 uniquement)

Désignation du type	P1K1	P1K5	P2K2	Р3К0	P4K0	P5K5	P7K5
Surcharge élevée/normale ¹⁾	SE/SN	SE/SN	SE/SN	SE/SN	SE/SN	SE/SN	SE/SN
Sortie d'arbre typique (kW)	1,1	1,5	2,2	3,0	4,0	5,5	7,5
Protection IP20	A3	A3	A3	A3	A3	A3	A3
Courant de sortie		•					•
Continu (525-550 V) [A]	2,1	2,7	3,9	4,9	6,1	9,0	11,0
Intermittent (525-550 V) [A]	3,4	4,3	6,2	7,8	9,8	14,4	17,6
Continu (551-690 V) [A]	1,6	2,2	3,2	4,5	5,5	7,5	10,0
Intermittent (551-690 V) [A]	2,6	3,5	5,1	7,2	8,8	12,0	16,0
KVA continu 525 V	1,9	2,5	3,5	4,5	5,5	8,2	10,0
KVA continu 690 V	1,9	2,6	3,8	5,4	6,6	9,0	12,0
Courant d'entrée max.							
Continu (525-550 V) [A]	1,9	2,4	3,5	4,4	5,5	8,1	9,9
Intermittent (525-550 V) [A]	3,0	3,9	5,6	7,0	8,8	12,9	15,8
Continu (551-690 V) [A]	1,4	2,0	2,9	4,0	4,9	6,7	9,0
Intermittent (551-690 V) [A]	2,3	3,2	4,6	6,5	7,9	10,8	14,4
Spécifications supplémentaires							
Section max. de câble ⁴⁾ pour secteur, moteur, frein et répartition de la charge [mm²] ([AWG])	4, 4, 4 (12, 12, 12) (min. 0,2 (24)						
Section max. de câble ⁴⁾ pour sectionneur [mm ²] ([AWG])	6, 4, 4 (10, 12, 12)						
Perte de puissance estimée à charge nominale max. [W] ³⁾	44	60	88	120	160	220	300
Rendement ²⁾	0,96	0,96	0,96	0,96	0,96	0,96	0,96

Tableau 6.10 Protection A3, alimentation secteur 525-690 V IP20/Châssis protégé, P1K1-P7K5

Désignation du type	P1	1K	P1	5K	P1	8K	P2	2K	
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	
Sortie d'arbre typique à 550 V [kW]	7,5	11	11	15	15	18,5	18,5	22	
Sortie d'arbre typique à 690 V [kW]	11	15	15	18,5	18,5	22	22	30	
Protection IP20	В	4	В	4	B4		B4		
Protection IP21, IP55	В	2	В	2	В	2	В	B2	
Courant de sortie									
Continu (525-550 V) [A]	14,0	19,0	19,0	23,0	23,0	28,0	28,0	36,0	
Intermittent (surcharge de 60 s) (525-550 V) [A]	22,4	20,9	30,4	25,3	36,8	30,8	44,8	39,6	
Continu (551-690 V) [A]	13,0	18,0	18,0	22,0	22,0	27,0	27,0	34,0	
Intermittent (surcharge de 60 s) (551-690 V) [A]	20,8	19,8	28,8	24,2	35,2	29,7	43,2	37,4	
kVA continu (à 550 V) [kVA]	13,3	18,1	18,1	21,9	21,9	26,7	26,7	34,3	
kVA continu (à 690 V) [kVA]	15,5	21,5	21,5	26,3	26,3	32,3	32,3	40,6	
Courant d'entrée max.									
Continu (à 550 V) [A]	15,0	19,5	19,5	24,0	24,0	29,0	29,0	36,0	
Intermittent (surcharge 60 s) (à 550 V) [A]	23,2	21,5	31,2	26,4	38,4	31,9	46,4	39,6	
Continu (à 690 V) [A]	14,5	19,5	19,5	24,0	24,0	29,0	29,0	36,0	
Intermittent (surcharge 60 s) (à 690 V) [A]	23,2	21,5	31,2	26,4	38,4	31,9	46,4	39,6	
Spécifications supplémentaires									
Section max. du câble ⁴⁾ pour secteur/moteur,	27 27 27 (2 1 1)								
répartition de la charge et frein [mm²] ([AWG])	35, 25, 25 (2, 4, 4)								
Section max. de câble ⁴⁾ pour sectionneur									
[mm ²] ([AWG])	16,10,10 (6, 8, 8)								
Perte de puissance estimée à charge nominale max. [W] ³⁾	150	220	220	300	300	370	370	440	
Rendement ²⁾	0,	98	0,	98	0,	98	0,	98	

Tableau 6.11 Protection B2/B4, alimentation secteur 525-690 V IP20/IP21/IP55 - Châssis/NEMA 1/NEMA 12 (FC 302 uniquement), P11K-P22K

Danfoss

Désignation du type	P3	ок	P3	37K	P4	5K	P5	5K	P7	'5K
Surcharge élevée/normale ¹⁾	SE	SN	SE	SN	SE	SN	SE	SN	SE	SN
Sortie d'arbre typique à 550 V (kW)	22	30	30	37	37	45	45	55	50	75
Sortie d'arbre typique à 690 V [kW]	30	37	37	45	45	55	55	75	75	90
Protection IP20	В	4	C		C	:3	D:	3h	D:	3h
Protection IP21, IP55	C	2		2		.2		2	C	.2
Courant de sortie										
Continu (525-550 V) [A]	36,0	43,0	43,0	54,0	54,0	65,0	65,0	87,0	87,0	105
Intermittent (surcharge de 60 s)										
(525-550 V) [A]	54,0	47,3	64,5	59,4	81,0	71,5	97,5	95,7	130,5	115,5
Continu (551-690 V) [A]	34,0	41,0	41,0	52,0	52,0	62,0	62,0	83,0	83,0	100
Intermittent (surcharge de 60 s)										
(551-690 V) [A]	51,0	45,1	61,5	57,2	78,0	68,2	93,0	91,3	124,5	110
kVA continu (à 550 V) [kVA]	34,3	41,0	41,0	51,4	51,4	61,9	61,9	82,9	82,9	100
kVA continu (à 690 V) [kVA]	40,6	49,0	49,0	62,1	62,1	74,1	74,1	99,2	99,2	119,5
Courant d'entrée max.										
Continu (à 550 V) [A]	36,0	49,0	49,0	59,0	59,0	71,0	71,0	87,0	87,0	99,0
Intermittent (surcharge 60 s) (à 550 V) [A]	54,0	53,9	72,0	64,9	87,0	78,1	105,0	95,7	129	108,9
Continu (à 690 V) [A]	36,0	48,0	48,0	58,0	58,0	70,0	70,0	86,0	-	-
Intermittent (surcharge 60 s) (à 690 V) [A]	54,0	52,8	72,0	63,8	87,0	77,0	105	94,6	-	-
Spécifications supplémentaires		-					-	-		
Section max. du câble pour secteur et moteur [mm²] ([AWG])	150 (300 MCM)									
Section max. du câble pour répartition de la charge et frein [mm²] ([AWG])	95 (3/0)									
Section max. de câble ⁴⁾ pour sectionneur [mm ²] ([AWG])	95, 70, 70 (3/0, 2/0, 2/0) 185, 150, 120 (350 MCM, 300 MCM, 4/0				мсм,		-			
Perte de puissance estimée à charge nominale max. [W] ³⁾	600	740	740	900	900	1100	1100	1500	1500	1800
Rendement ²⁾	0,9	 98	0,	98	0,	98	0,	98	0,	98

Tableau 6.12 Protection B4, C2, C3, alimentation secteur 525-690 V IP20/IP21/IP55 - Châssis/NEMA1/NEMA 12 (FC 302 uniquement), P30K-P75K

Pour les calibres des fusibles, voir le chapitre 9.3.1 Fusibles et disjoncteurs.

Les valeurs s'appuient sur le rendement typique d'un moteur (limite eff2/eff3). Les moteurs de moindre rendement renforcent également la perte de puissance du variateur de fréquence et vice versa.

Si la fréquence de commutation est supérieure à la valeur nominale, les pertes de puissance peuvent augmenter considérablement. Les puissances consommées par le LCP et la carte de commande sont incluses. Les options supplémentaires et la charge placée par l'utilisateur peuvent ajouter jusqu'à 30 W aux pertes. (Bien qu'il soit typique d'avoir 4 W supplémentaires uniquement pour une carte de commande à pleine charge ou des options pour l'emplacement A ou B, chacun).

Même si les mesures sont relevées avec du matériel de pointe, des imprécisions peuvent être admises pour (± 5 %).

¹⁾ Surcharge élevée (SE) = couple de 150 ou 160 % pendant 60 s. Surcharge normale =couple de 110 % pendant 60 s.

²⁾ Mesuré avec des câbles moteur blindés de 5 m à la charge et à la fréquence nominales.

³⁾ La perte de puissance typique, mesurée dans des conditions de charge nominales, est de ±15 % (la tolérance est liée à la variété des conditions de tension et de câblage).

⁴⁾ Les trois valeurs pour la section de câble max. correspondent respectivement à un câble monoconducteur, à un fil souple et à un fil souple avec manchon.

6.2 Spécifications générales

6.2.1 Alimentation secteur

Alimentation secteur

Bornes d'alimentation (6 impulsions)	L1, L2, L3
Tension d'alimentation	200-240 V ±10 %
Tension d'alimentation	FC 301: 380-480 V/FC 302 : 380-500 V ±10 %
Tension d'alimentation	FC 302: 525-600 V ±10 %
Tension d'alimentation	FC 302: 525-690 V ±10 %

Tension secteur faible/Chute de la tension secteur :

En cas de tension secteur basse ou de chute de la tension secteur, le variateur de fréquence continue de fonctionner jusqu'à ce que la tension présente sur le circuit intermédiaire descende sous le seuil d'arrêt minimum, qui correspond généralement à 15 % de moins que la tension nominale d'alimentation la plus basse du variateur de fréquence. Mise sous tension et couple complet ne sont pas envisageables à une tension secteur inférieure à 10 % de la tension nominale d'alimentation secteur du variateur de fréquence.

Fréquence d'alimentation	50/60 Hz ±	£5 %
Écart temporaire max. entre phases secteur	3,0 % de la tension nominale d'alimenta	ation
Facteur de puissance réelle (λ)	≥ 0,9 à charge nomi	inale
Facteur de puissance de déphasage (cos φ)	près de l'unité (> (0,98)
Commutation sur l'entrée d'alimentation L1, L2, L3 (mises sous tension)	4 7,5 kW maximum 2 fois	/min
Commutation sur l'entrée d'alimentation L1, L2, L3 (hausses de puissance	e) 11-75 kW maximum 1 fois	/min
Commutation sur l'entrée d'alimentation L1, L2, L3 (mises sous tension)	≥ 90 kW maximum 1 fois/2	min
Environnement conforme à la norme EN 60664-1	catégorie de surtension III/degré de pollution	on 2

L'utilisation de l'unité convient sur un circuit limité à 100 000 ampères symétriques RMS, 240/500/600/690 V maximum.

6.2.2 Puissance et données du moteur

Puissance du moteur (U, V, W)

(-, -, -,,	
Tension de sortie	0-100 % de la tension d'alimentation
Fréquence sortie	0-590 Hz ³⁾
Fréquence de sortie en mode Flux	0-300 Hz
Commutation sur la sortie	Illimitée
Temps de rampe	0,01-3 600 s

Caractéristiques de couple

Couple de démarrage (couple constant)	maximum 160 % pendant 60 s ¹⁾ une fois en 10 min
Couple de démarrage/surcouple (couple variable)	maximum 110 % jusqu'à 0,5 s ¹⁾ une fois en 10 min.
Temps de montée du couple en FLUX (pour fsw égale à 5 kHz)	1 ms
Temps de montée du couple en VVC ^{plus} (indépendant de fsw)	10 ms

^{1) *}Le pourcentage se réfère au couple nominal.

²⁾ Le temps de réponse du couple dépend de l'application et de la charge, mais en général, le temps de passage du couple de 0 à la valeur de référence est égal à 4-5 x le temps de montée du couple.

³⁾ Les versions spéciales client avec fréquence de sortie de 0 à 1 000 Hz sont disponibles.

6.2.3 Conditions ambiantes

Environnement		
Protection		IP20/Châssis, IP21/Type 1, IP55/ Type 12, IP66/ Type 4X
Essai de vibration		1,0 g
THVD max.		10%
Humidité relative max.	5-93 % (CEI 721-3-3) ;	classe 3K3 (non condensante) pendant le fonctionnement
Environnement agressif (CEI 6006	8-2-43) test H₂S	classe Kd
Température ambiante		50 °C max. (moyenne sur 24 heures maximum 45 °C)
Température ambiante min. en pl		0 °C
Température ambiante min. en ex	cploitation réduite	- 10 °C
Température durant le stockage/t	ransport	-25 à +65/70 °C
Altitude max. au-dessus du niveau	u de la mer sans déclassement	1 000 m
Normes CEM, Émission		EN 61800-3, EN 55011 ¹⁾
Normes CEM, Immunité		EN61800-3, EN 61000-6-1/2

¹⁾ Voir le chapitre 5.2.1 Résultats des essais CEM

6.2.4 Câble: spécifications

Longueurs et sections des câbles de commande ¹⁾	
Longueur max. du câble du moteur, blindé	150 m
Longueur max. du câble du moteur, non blindé	300 m
Section max. des bornes de commande, fil souple/rigide sans manchon d'extrémité de câble	1,5 mm ² /16 AWG
Section max. des bornes de commande, fil souple avec manchons d'extrémité de câble	1 mm ² /18 AWG
Section max. des bornes de commande, fil souple avec manchons d'extrémité de câble et collier	0,5 mm ² /20 AWG
Section minimale des bornes de commande	0,25 mm ² /24 AWG

¹⁾ Pour les câbles de puissance, voir les tableaux de données électriques au chapitre 6.1 Données électriques.

6.2.5 Entrée/sortie de commande et données de commande

6.2.5.1 Entrées digitales

Entrées die	gital	es
-------------	-------	----

Entrées numériques programmables	FC 301: 4 (5) ¹⁾ /FC 302: 4 (6) ¹⁾
N° de borne	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33
Logique	PNP ou NPN
Niveau de tension	0-24 V CC
Niveau de tension, « 0 » logique PNP	< 5 V CC
Niveau de tension, « 1 » logique PNP	> 10 V CC
Niveau de tension, « 0 » logique NPN ²⁾	> 19 V CC
Niveau de tension, « 1 » logique NPN ²⁾	< 14 V CC
Tension maximale sur l'entrée	28 V CC
Plage de fréquence d'impulsion	0-110 kHz
(Cycle d'utilisation) durée de l'impulsion min.	4,5 ms
Résistance d'entrée, Ri	env. 4 kΩ

Arrêt de sécurité, borne 37^{3, 4)} (borne 37 logique PNP)

Niveau de tension	0-24 V CC
Niveau de tension, « 0 » logique PNP	< 4 V CC
Niveau de tension, « 1 » logique PNP	> 20 V CC
Tension maximale sur l'entrée	28 V CC
Courant d'entrée typique à 24 V	50 mA rms
Courant d'entrée typique à 20 V	60 mA rms
Capacitance d'entrée	400 nF

Toutes les entrées digitales sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Entrées analogiques

Nombre d'entrées analogiques	2
N° de borne	53, 54
Modes	Tension ou courant
Sélection du mode	Commutateurs S201 et S202
Mode tension	Commutateur S201/commutateur S202 = Inactif (U)
Niveau de tension	-10 à +10 V (échelonnable)
Résistance d'entrée, Ri	env. 10 kΩ
Tension max.	± 20 V
Mode courant	Commutateur S201/commutateur S202 = Actif (I)
Niveau de courant	0/4 à 20 mA (échelonnable)
Résistance d'entrée, Ri	env. 200 Ω
Courant max.	30 mA
Résolution des entrées analogiques	10 bits (signe +)
Précision des entrées analogiques	Erreur max. 0,5 % de l'échelle totale
Largeur de bande	100 Hz

Les entrées analogiques sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

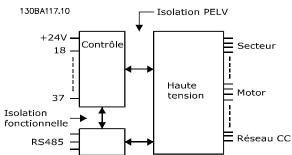


Illustration 6.1 Isolation PELV

¹⁾ Les bornes 27 et 29 peuvent aussi être programmées comme sorties.

²⁾ Sauf entrée de l'arrêt de sécurité, borne 37.

³⁾ Consulter le Manuel d'utilisation des variateurs de fréquence VLT® - Absence sûre du couple pour en savoir plus sur la borne 37 et l'Arrêt de sécurité.

⁴⁾ En cas d'utilisation d'un contacteur comportant une bobine CC en association avec l'arrêt de sécurité, il est important de prévoir un chemin de retour pour le courant venant de la bobine lors de sa mise hors tension. Cela peut être obtenu en installant dans la bobine une diode de roue libre (ou bien un MOV de 30 ou 50 V pour un temps de réponse plus court). Les contacteurs typiques peuvent être achetés avec cette diode.

Entrées	cod	leur/	'impu	Isions

2.11. 665 66 66 61, 11.15 61.516.15	
Entrées codeur/impulsions programmables	2/1
Numéro de borne impulsion/codeur	29 ¹⁾ , 33 ²⁾ / 32 ³⁾ , 33 ³⁾
Fréquence max. à la borne 29, 32, 33	110 kHz (activation push-pull)
Fréquence max. à la borne 29, 32, 33	5 kHz (collecteur ouvert)
Fréquence min. à la borne 29, 32, 33	4 Hz
Niveau de tension	Voir la section concernant l'entrée digitale
Tension maximale sur l'entrée	28 V CC
Résistance d'entrée, Ri	env. 4 kΩ
Précision d'entrée d'impulsion (0,1-1 kHz)	Erreur max. : 0,1 % de l'échelle totale
Précision d'entrée du codeur (1-11 kHz)	Erreur max. : 0,05 % de l'échelle totale

Les entrées d'impulsions et du codeur (bornes 29, 32, 33) sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Sortie digitale

Sorties digitales/impulsions programmables	2
N° de borne	27, 29 ¹⁾
Niveau de tension à la sortie digitale/en fréquence	0-24 V
Courant de sortie max. (récepteur ou source)	40 mA
Charge max. à la sortie en fréquence	1 kΩ
Charge capacitive max. à la sortie en fréquence	10 nF
Fréquence de sortie min. à la sortie en fréquence	0 Hz
Fréquence de sortie max. à la sortie en fréquence	32 kHz
Précision de la sortie en fréquence	Erreur max. : 0,1 % de l'échelle totale
Résolution des sorties en fréquence	12 bits

¹⁾ Les bornes 27 et 29 peuvent être programmées comme entrée.

La sortie digitale est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Sortie analogique

Nombre de sorties analogiques programmables	1
N° de borne	42
Plage de courant de la sortie analogique	0/4 à 20 mA
Charge max. à la terre - sortie analogique inférieure à	500 Ω
Précision de la sortie analogique	Erreur max. : 0,5 % de l'échelle totale
Résolution de la sortie analogique	12 bits

La sortie analogique est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

Carte de commande, sortie 24 V CC

N° de borne	12, 13
Tension de sortie	24 V +1, -3 V
Charge max.	200 mA

L'alimentation 24 V CC est isolée galvaniquement de la tension d'alimentation (PELV) tout en ayant le même potentiel que les entrées et sorties analogiques et digitales.

Carte de commande, sortie 10 V CC

N° de borne	±50
Tension de sortie	10,5 V ±0,5 V
Charge max.	15 mA

L'alimentation 10 V CC est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

¹⁾ FC 302 uniquement

²⁾ Les entrées d'impulsions sont 29 et 33

³⁾ Entrées codeur : 32 = A et 33 = B

Carte de	commande	communication	cérie RS-485	
Carte de	Commande	Communication	3elle h3-403	,

N° de borne	68 (P,TX+, RX+), 69 (N,TX-, RX-)
Borne n° 61	Commun des bornes 68 et 69

Le circuit de communication série RS-485 est séparé fonctionnellement des autres circuits centraux et isolé galvaniquement de la tension d'alimentation (PELV).

Carte de commande, communication série USB

Norme USB	1.1 (Pleine vitesse)
Fiche USB	Fiche « appareil » USB de type B

La connexion au PC est réalisée via un câble USB standard hôte/dispositif.

La connexion USB est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

La mise à la terre USB <u>n</u>'est <u>pas</u> isolée galvaniquement de la terre de protection. Utiliser uniquement un ordinateur portable isolé en tant que connexion PC au connecteur USB sur le variateur de fréquence.

Sorties relais

Sorties relais	
Sorties relais programmables	FC 301, tous kW : 1/FC 302, tous kW : 2
N° de borne relais 01	1-3 (interruption), 1-2 (établissement)
Charge max. sur les bornes (CA-1) ¹⁾ sur 1-3 (NF), 1-2 (NO) (charge résistive)	240 V CA, 2 A
Charge max. sur les bornes (CA-15) ¹⁾ (charge inductive à cosφ 0,4)	240 V CA, 0,2 A
Charge max. sur les bornes (CC-1) ¹⁾ sur 1-2 (NO), 1-3 (NF) (charge résistive)	60 V CC, 1 A
Charge max. sur les bornes (CC-13) ¹⁾ (charge inductive)	24 V CC, 0,1 A
Relais 02 (FC 302 uniquement) Numéro de borne	4-6 (interruption), 4-5 (établissement)
Charge max. sur les bornes (CA-1) ¹⁾ sur 4-5 (NO) (charge résistive) ²⁾³⁾ Surtension	n cat. II 400 V CA, 2 A
Charge max. sur les bornes (CA-15) ¹⁾ sur 4-5 (NO) (charge inductive à cosφ 0,4) 240 V CA, 0,2 A
Charge max. sur les bornes (CC-1) ¹⁾ sur 4-5 (NO) (charge résistive)	80 V CC, 2 A
Charge max. sur les bornes (CC-13) ¹⁾ sur 4-5 (NO) (charge inductive)	24 V CC, 0,1 A
Charge max. sur les bornes (CA-1) ¹⁾ sur 4-6 (NF) (charge résistive)	240 V CA, 2 A
Charge max. sur les bornes (CA-15) ¹⁾ sur 4-6 (NF) (charge inductive à cosφ 0.4)	240 V CA, 0,2 A
Charge max. sur les bornes (CC-1) ¹⁾ sur 4-6 (NF) (charge résistive)	50 V CC, 2 A
Charge max. sur les bornes (CC-13) ¹⁾ sur 4-6 (NF) (charge inductive)	24 V CC, 0,1 A
Charge min. sur les bornes 1-3 (NF), 1-2 (NO), 4-6 (NF), 4-5 (NO)	24 V CC 10 mA, 24 V CA 20 mA
Environnement conforme à la norme EN 60664-1	catégorie de surtension III/degré de pollution 2

¹⁾ CEI 60947 parties 4 et 5

Les contacts de relais sont isolés galvaniquement du reste du circuit par une isolation renforcée (PELV).

Performance de la carte de commande

Intervalle de balayage	1 ms
Caractéristiques de contrôle	
Résolution de fréquence de sortie à 0-590 Hz	±0,003 Hz
Précision de reproductibilité de Dém/arrêt précis (bornes 18, 19)	≤±0,1 ms
Temps de réponse système (bornes 18, 19, 27, 29, 32, 33)	≤ 2 ms
Plage de commande de vitesse (boucle ouverte)	1:100 de la vitesse synchrone
Plage de commande de vitesse (boucle fermée)	1:1000 de la vitesse synchrone
Précision de vitesse (boucle ouverte)	30-4 000 tr/min : erreur ±8 tr/min
Précision de vitesse (boucle fermée) fonction de la résolution du disposi	tif du signal de
retour	0-6 000 tr/min : erreur ±0,15 tr/min
Précision de commande du couple (retour de vitesse)	erreur max. ±5 % du couple nominal

Toutes les caractéristiques de contrôle sont basées sur un moteur asynchrone 4 pôles.

²⁾ Catégorie de surtension II

³⁾ Applications UL 300 V CA 2A

6.2.6 Déclassement pour température ambiante

6.2.6.1 Déclassement pour température ambiante, protection de type A

60° AVM - Modulation par largeur d'impulsion

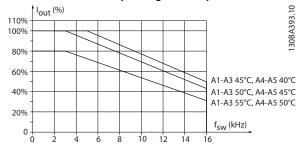


Illustration 6.2 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de type A, utilisant 60° AVM

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

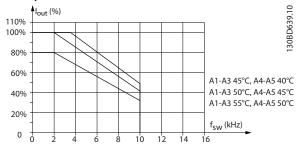


Illustration 6.3 Déclassement de l_{sortie} pour différentes T_{AMB}, _{MAX} pour protections de type A, utilisant SFAVM

En cas d'utilisation de câble de moteur de 10 m ou moins dans une protection de type A, un déclassement moindre est nécessaire. Cela vient du fait que la longueur du câble de moteur a une influence relativement importante sur le déclassement recommandé.

60° AVM

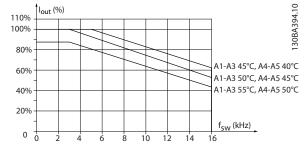


Illustration 6.4 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour des protections de type A, utilisant 60° AVM et un câble moteur de 10 m maximum

SFAVM

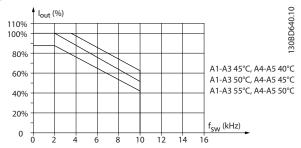


Illustration 6.5 Déclassement de I_{sortie} pour différentes T_{AMB} , MAX pour des protections de type A, utilisant SFAVM et un câble moteur de 10 m maximum

6.2.6.2 Déclassement pour température ambiante, protections de types B

Protection B, T2, T4 et T5

Pour les protections de types B et C, le déclassement dépend également du mode de surcharge sélectionné au par. 1-04 Mode de surcharge

60° AVM - Modulation par largeur d'impulsion

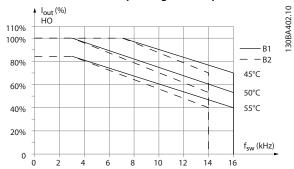


Illustration 6.6 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types B1 et B2, utilisant 60° AVM en mode de surcharge élevée (surcouple de 160 %)

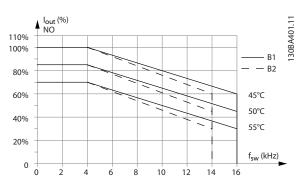


Illustration 6.7 Déclassement de I_{sortie} pour différentes T_{AMB}, _{MAX} pour protections de types B1 et B2, utilisant 60° AVM en mode de surcharge normale (surcouple de 110 %)

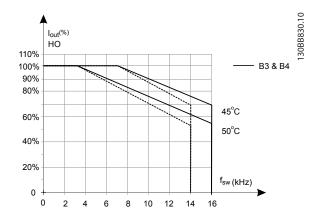


Illustration 6.8 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types B3 et B4, utilisant 60° AVM en mode de surcharge élevée (surcouple de 160 %)

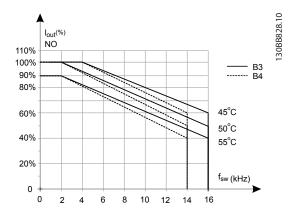


Illustration 6.9 Déclassement de I_{sortie} pour différentes T_{AMB} , MAX pour protections de types B3 et B4, utilisant 60° AVM en mode de surcharge normale (surcouple de 110 %)

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

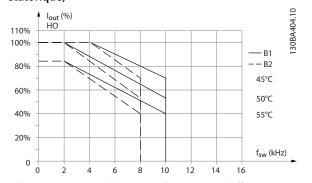


Illustration 6.10 Déclassement de l_{sortie} pour différentes T_{AMB,} MAX pour protections de types B1 et B2, utilisant SFAVM en mode de surcharge élevée (surcouple de 160 %)

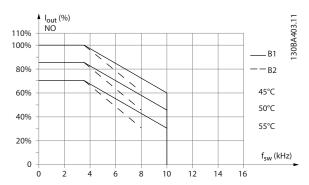


Illustration 6.11 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types B1 et B2, utilisant SFAVM en mode de surcharge normale (surcouple de 110 %)

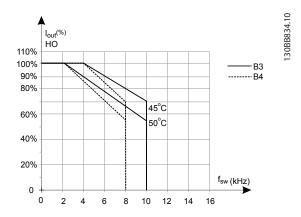


Illustration 6.12 Déclassement de I_{sortie} pour différentes T_{AMB} , MAX pour protections de types B3 et B4, utilisant SFAVM en mode de surcharge élevée (surcouple de 160 %)

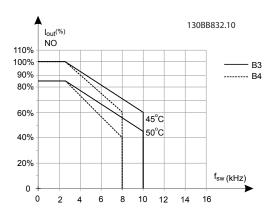


Illustration 6.13 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types B3 et B4, utilisant SFAVM en mode de surcharge normale (surcouple de 110 %)

Protections B, T6 60° AVM - Modulation par largeur d'impulsion

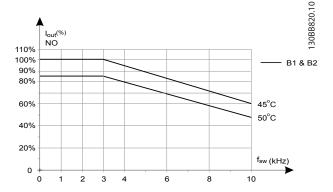


Illustration 6.14 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protection de type B, 60° AVM, SN

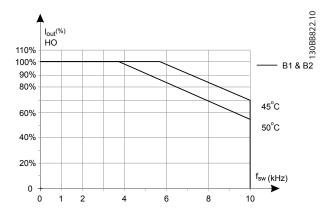


Illustration 6.15 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protection de type B, 60° AVM, SE

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

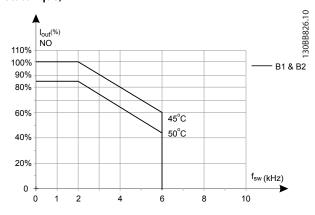


Illustration 6.16 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protection de type B, SFAVM, SN

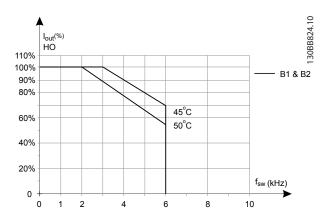


Illustration 6.17 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protection de type B, SFAVM, SE

Protections B, T7 Protections B2 et B4, 525-690 V 60° AVM - Modulation par largeur d'impulsion

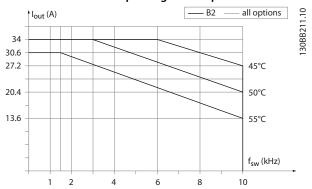


Illustration 6.18 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour protections de types B2 et B4, 60° AVM. Remarque : le graphique est dessiné avec le courant comme valeur absolue et convient pour des surcharges normale et élevée.

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

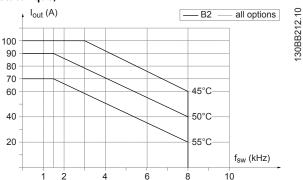


Illustration 6.19 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour protections de types B2 et B4, SFAVM. Remarque : le graphique est dessiné avec le courant comme valeur absolue et convient pour des surcharges normale et élevée.

6.2.6.3 Déclassement pour température ambiante, protections de types C

Protections C, T2, T4 et T5 60° AVM - Modulation par largeur d'impulsion

Illustration 6.20 Déclassement de l_{sortie} pour différentes T_{AMB,} _{MAX} pour protections de types C1 et C2, utilisant 60° AVM en mode surcharge élevée (surcouple de 160 %)

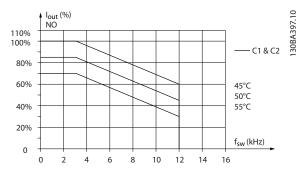


Illustration 6.21 Déclassement de I_{sortie} pour différentes $T_{AMB,MAX}$ pour protections de types C1 et C2, utilisant 60° AVM en mode surcharge normale (surcouple de 110 %)

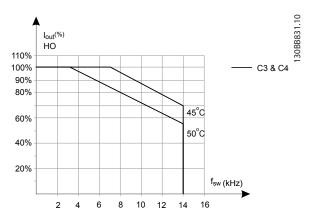


Illustration 6.22 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types C3 et C4, utilisant 60° AVM en mode surcharge élevée (surcouple de 160 %)

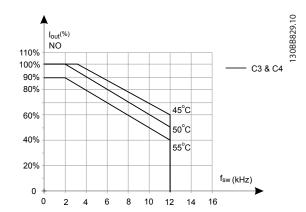
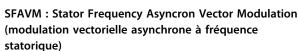



Illustration 6.23 Déclassement de l_{sortie} pour différentes T_{AMB}, MAX pour protections de types C3 et C4, utilisant 60° AVM en mode surcharge normale (surcouple de 110 %)

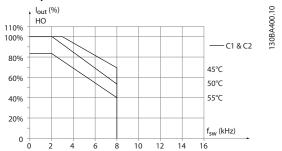


Illustration 6.24 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types C1 et C2, utilisant SFAVM en mode surcharge élevée (surcouple de 160 %)

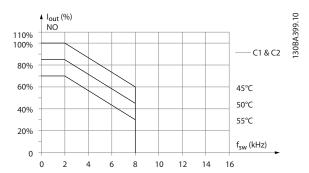


Illustration 6.25 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types C1 et C2, utilisant SFAVM en mode surcharge normale (surcouple de 110 %)

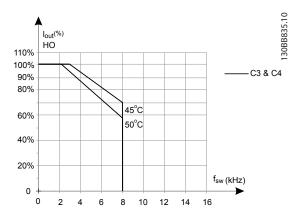


Illustration 6.26 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types C3 et C4, utilisant SFAVM en mode surcharge élevée (surcouple de 160 %)

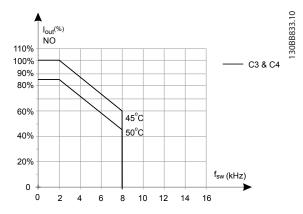


Illustration 6.27 Déclassement de I_{sortie} pour différentes T_{AMB}, MAX pour protections de types C3 et C4, utilisant SFAVM en mode surcharge normale (surcouple de 110 %)

Protections de types C, T6 60° AVM - Modulation par largeur d'impulsion

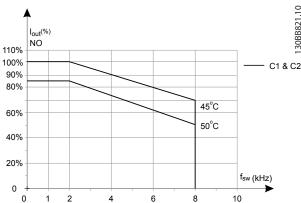


Illustration 6.28 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protection de type C, 60° AVM, SN.

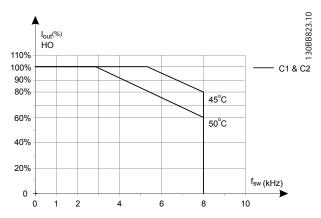


Illustration 6.29 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquence de 600 V, protections de types C, 60° AVM, SE.

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

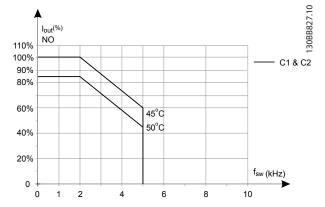


Illustration 6.30 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquences de 600 V, protections de types C, SFAVM, SN

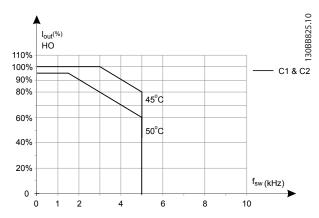


Illustration 6.31 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour variateurs de fréquences de 600 V, protections de types C, SFAVM, SE

Protection de type C, T7 60° AVM - Modulation par largeur d'impulsion

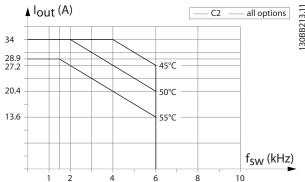


Illustration 6.32 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour protection de type C2, 60° AVM. Remarque : le graphique est dessiné avec le courant comme valeur absolue et convient pour des surcharges normale et élevée.

30BD597.10

SFAVM : Stator Frequency Asyncron Vector Modulation (modulation vectorielle asynchrone à fréquence statorique)

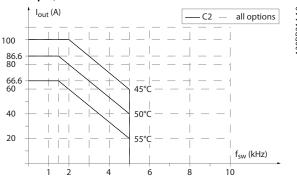


Illustration 6.33 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour protection de type C2, SFAVM. Remarque : le graphique est dessiné avec le courant comme valeur absolue et convient pour des surcharges normale et élevée.

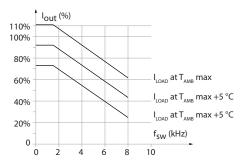


Illustration 6.34 Déclassement du courant de sortie avec fréquence de commutation et température ambiante pour protection de type C3

6.2.7 Valeurs mesurées pour le test dU/dt

Pour éviter l'endommagement des moteurs sans papier d'isolation de phase ou autre renforcement d'isolation prévus pour l'exploitation du variateur de fréquence, il est vivement recommandé d'installer un filtre dU/dt ou LC à la sortie du variateur de fréquence.

Quand un transistor est activé dans le pont de l'onduleur, la tension appliquée au moteur augmente selon un rapport dU/dt dépendant :

- de l'nductance moteur
- du câble moteur (type, section, longueur, blindage ou non)

L'auto-induction entraîne un pic de tension du moteur avant de se stabiliser. Le niveau dépend de la tension dans le circuit intermédiaire.

Le pic de tension sur les bornes du moteur est causé par l'activation des IGBT. Le temps de montée et la tension de pointe influencent tous deux la durée de vie du moteur.

Une tension de pointe trop élevée affecte principalement les moteurs dépourvus d'isolation de bobines entre phases.

Avec des câbles moteur courts (quelques mètres), le temps de montée et le pic de tension sont plus faibles. Le temps de montée et le pic de tension augmentent avec la longueur du câble (100 m).

Le variateur de fréquence est conforme aux normes CEI 60034-25 et CEI 60034-17 pour la construction du moteur.

200-240 V (T2)

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
5	240	0,13	0,510	3,090
50	240	0,23		2,034
100	240	0,54	0,580	0,865
150	240	0,66	0,560	0,674

Tableau 6.13 P5K5T2

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	240	0,264	0,624	1,890
136	240	0,536	0,596	0,889
150	240	0,568	0,568	0,800

Tableau 6.14 P7K5T2

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
30	240	0,556	0,650	0,935
100	240	0,592	0,594	0,802
150	240	0,708	0,587	0,663

Tableau 6.15 P11KT2

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	240	0,244	0,608	1,993
136	240	0,568	0,580	0,816
150	240	0,720	0,574	0,637

Tableau 6.16 P15KT2

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/µs]
36	240	0,244	0,608	1,993
136	240	0,568	0,580	0,816
150	240	0,720	0,574	0,637

Tableau 6.17 P18KT2

MG33BF04

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
15	240	0,194	0,626	2,581
50	240	0,252	0,574	1,822
150	240	0,488	0,538	0,882

Tableau 6.18 P22KT2

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
30	240	0,300	0,598	1,594
100	240	0,536	0,566	0,844
150	240	0,776	0,546	0,562

Tableau 6.19 P30KT2

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
30	240	0,300	0,598	1,594
100	240	0,536	0,566	0,844
150	240	0,776	0,546	0,562

Tableau 6.20 P37KT2

380-500 V (T4)

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/µs]
5	480	0,640	0,690	0,862
50	480	0,470	0,985	0,985
150	480	0,760	1,045	0,947

Tableau 6.21 P1K5T4

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
5	480	0,172	0,890	4,156
50	480	0,310		2,564
150	480	0,370	1,190	1,770

Tableau 6.22 P4K0T4

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
5	480	0,04755	0,739	8,035
50	480	0,207		4,548
150	480	0,6742	1,030	2,828

Tableau 6.23 P7K5T4

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
36	480	0,396	1,210	2,444
100	480	0,844	1,230	1,165
150	480	0,696	1,160	1,333

Tableau 6.24 P11KT4

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	480	0,396	1,210	2,444
100	480	0,844	1,230	1,165
150	480	0,696	1,160	1,333

Tableau 6.25 P15KT4

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	480	0,312		2,846
100	480	0,556	1,250	1,798
150	480	0,608	1,230	1,618

Tableau 6.26 P18KT4

Longueur	Tension secteur	Temps de montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
15	480	0,288		3,083
100	480	0,492	1,230	2,000
150	480	0,468	1,190	2,034

Tableau 6.27 P22KT4

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
5	480	0,368	1,270	2,853
50	480	0,536	1,260	1,978
100	480	0,680	1,240	1,426
150	480	0,712	1,200	1,334

Tableau 6.28 P30KT4

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
5	480	0,368	1,270	2,853
50	480	0,536	1,260	1,978
100	480	0,680	1,240	1,426
150	480	0,712	1,200	1,334

Tableau 6.29 P37KT4

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
15	480	0,256	1,230	3,847
50	480	0,328	1,200	2,957
100	480	0,456	1,200	2,127
150	480	0,960	1,150	1,052

Tableau 6.30 P45KT4

380-500 V (T5)

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
5	480	0,371	1,170	2,523

Tableau 6.31 P55KT5

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
5	480	0,371	1,170	2,523

Tableau 6.32 P75KT5

600 V (T6)

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	600	0,304	1,560	4,105
50	600	0,300	1,550	4,133
100	600	0,536	1,640	2,448
150	600	0,576	1,640	2,278

Tableau 6.33 P15KT6

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
36	600	0,084	1,560	7,962
50	600	0,120	1,540	5,467
100	600	0,165	1,472	3,976
150	600	0,190	1,530	3,432

Tableau 6.34 P30KT6

	Tension	Temps de		
Longueur	secteur	montée	Upeak	dU/dt
de câble [m]	[V]	[µs]	[kV]	[kV/µs]
15	600	0,276	1,184	4,290

Tableau 6.35 P75KT6

525-690 V (T7)

Longueur de câble [m]	secteur	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
80	690	0,58	1,728	2369
130	690	0,93	1,824	1569
180	690	0,925	1,818	1570

Tableau 6.36 P7K5T7

Longueur de câble [m]	Tension secteur [V]	Temps de montée [µs]	Upeak [kV]	dU/dt [kV/μs]
6	690	0,238	1416	4739
50	690	0,358	1764	3922
150	690	0,465	1872	3252

Tableau 6.37 P45KT7

6.2.8 Rendement

Rendement du variateur de fréquence

La charge du variateur de fréquence a peu d'influence sur son rendement.

Cela signifie aussi que le rendement du variateur de fréquence n'est pas modifié en choisissant différentes caractéristiques tension/fréquence. Ces dernières affectent cependant le rendement du moteur.

Le rendement baisse un peu lorsque la fréquence de commutation est réglée sur une valeur supérieure à 5 kHz. Le rendement baisse également un peu lorsque le câble moteur dépasse 30 m.

Calcul du rendement

Calculer le rendement du variateur de fréquence à différentes charges selon l'*Illustration 6.35*. Multiplier le facteur de ce graphique par le facteur de rendement spécifique répertorié dans le *chapitre 6.2 Spécifications générales*.

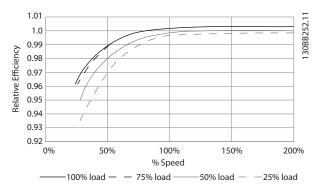


Illustration 6.35 Courbes de rendement typique

Exemple : prenons comme hypothèse un variateur de fréquence 55 kW, 380-480 V CA avec une charge de 25 %, à 50 % de sa vitesse. Le graphique montre 0,97 ; le rendement nominal pour le variateur 55 kW est de 0,98. Le rendement réel est donc : 0,97 x 0,98=0,95.

Classes d'efficacité

Le rendement d'un moteur raccordé à un variateur de fréquence est lié au niveau de magnétisation. Le rendement du moteur dépend de son type.

- Dans la plage de 75 à 100 % du couple nominal, le rendement du moteur sera pratiquement constant dans les deux cas d'exploitation avec le variateur de fréquence et avec l'alimentation directe par le secteur.
- L'influence de la caractéristique tension/fréquence sur les petits moteurs est marginale, mais avec des moteurs de 11 kW et plus, les avantages sur le rendement sont significatifs.
- La fréquence de commutation n'affecte pas le rendement des petits moteurs. Les moteurs de 11 kW et plus ont un meilleur rendement (1 à 2 %). Le rendement est amélioré puisque la sinusoïde du courant du moteur est presque parfaite à fréquence de commutation élevée.

Rendement du système

Pour calculer le rendement du système, multiplier le rendement du variateur de fréquence par le rendement du moteur.

6.2.9 Bruit acoustique

Le bruit acoustique du variateur de fréquence provient de 3 sources

- Bobines du circuit intermédiaire CC
- Filtre RFI obstrué
- Ventil. int.

Se reporter au *Tableau 6.38* pour obtenir les données sur le bruit acoustique.

Type de protection	Vitesse du ventilateur à 50 %	Vitesse maximale du ventilateur
	[dBA]	[dBA]
A1	51	60
A2	51	60
A3	51	60
A4	51	60
A5	54	63
B1	61	67
B2	58	70
B4	52	62
C1	52	62
C2	55	65
C4	56	71
D3h	58	71

Tableau 6.38 Caractéristiques du bruit acoustique

Les valeurs sont mesurées à 1 m de l'unité.

130BB836.10

7 Commande

7.1 Système de configuration du variateur

1 :	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	,
F	С	-				Р				Т											Χ	Χ	S	Χ	Χ	Χ	Χ	Α		В		С					D		,,,,

Illustration 7.1 Exemple de code type

Configurer le variateur de fréquence adapté à l'application et générer le type de code string à partir du système de configuration du variateur sur Internet. Le système de configuration génère automatiquement une référence de vente à 8 chiffres à envoyer au service commercial local.

Par ailleurs, il est possible d'établir une liste de projets comportant plusieurs produits et de l'envoyer à un représentant de Danfoss.

Le système de configuration du variateur se trouve sur le site Internet : www.danfoss.com/drives.

7.1.1 Code type

Exemple de code type :

FC-302PK75T5E20H1BGCXXXSXXXXA0BXCXXXXD0

La signification des caractères de la chaîne est définie dans les *Tableau 7.1* et *Tableau 7.2*. Dans l'exemple ci-dessus, un Profibus DP V1 et une option de secours 24 V sont inclus dans le variateur.

Description	Pos.	Choix possibles
Groupe de	1-3	FC 30x
produits		
Série de	4-6	301: FC 301
variateur		302: FC 302
Dimension-	8-10	0,25-75 kW
nement		
puissance		
Phases	11	Triphasé (T)
Tension	11-12	T2 : 200-240 V
secteur		T4:380-480 V
		T5: 380-500 V
		T6: 525-600 V
		T7: 525-690 V
Protection	13-15	E20 : IP20
		E55 : IP55/NEMA Type 12
		P20 : IP20 (avec plaque arrière)
		P21 : IP21/NEMA Type 1 (avec plaque arrière)
		P55 : IP55/NEMA Type 12 (avec plaque arrière)
		Z20 : IP20 ¹⁾
		E66: IP66

Description	Pos.	Choix possibles
Filtre RFI	16-17	Hx : Aucun filtre CEM intégré dans le variateur de fréquence (unités de 600 V uniquement)
		H1 : Filtre CEM intégré. Conforme à la norme EN 55011 classe A1/B et EN/CEI 61800-3 catégorie 1/2
		H2 : Pas de filtre CEM supplémentaire. Conforme à EN 55011 classe A2 et EN/CEI 61800-3 catégorie 3
		H3:
		H3 - filtre CEM intégré. Conforme à la norme EN 55011 classe A1/B et EN/CEI 61800-3 catégorie 1/2
		(protection de type A1 uniquement) ¹⁾
		H4 : Filtre CEM intégré. Conforme aux normes EN 55011 classe A1 et EN/CEI 61800-3 catégorie 2
		H5 : Versions marines. Conforme aux mêmes niveaux d'émissions que les versions H2
Frein	18	B : Hacheur de freinage inclus
		X : Aucun hacheur de freinage inclus
		T : Arrêt de sécurité, pas de frein ¹⁾
		U : Hacheur de freinage à arrêt de sécurité ¹⁾
Affichage	19	G : Panneau de commande local graphique (LCP)
		N : Panneau de commande local numérique (LCP)
		X : Aucun panneau de commande local
Tropicalisation	20	C : PCB tropicalisé
PCB		R : Renforcé
		X : PCB non tropicalisé
Option	21	X : Pas d'option secteur
secteur		1 : Sectionneur secteur
		3 : Sectionneur secteur et fusible ²⁾
		5 : Sectionneur secteur, fusible et répartition de la charge ^{2, 3)}
		7 : Fusible ²⁾
		8 : Sectionneur secteur et répartition de la charge ³⁾
		A : Fusible et répartition de la charge ^{2, 3)}
		D : Répartition de la charge ³⁾
Adaptation	22	X : Entrées de câble standard
		O : Filetage métrique européen dans les entrées de câble (A4, A5, B1, B2, C1, C2 uniquement)
		S : Entrées de câble impériales (A5, B1, B2, C1 et C2 uniquement)
Adaptation	23	X : Pas d'adaptation
Version du	24-27	SXXX : Dernière version - logiciel standard
logiciel		
Langue du	28	X : Non utilisé
logiciel		

logiciel 1) FC 301/Protection de type A1 uniquement

Tableau 7.1 Code type de commande Protections de types A, B et C

Description	Pos.	Choix possibles
Options A	29-30	AX : Pas d'option A
		A0 : Profibus DP V1 MCA 101 (standard)
		A4 : DeviceNet MCA 104 (standard)
		A6 : CANOpen MCA 105 (standard)
		AN : MCA 121 Ethernet IP
		AL : MCA 120 ProfiNet
		AQ : MCA-122 Modbus TCP
		AT : Variateur MCA 113 Profibus VLT 3000
		AU : Variateur MCA 114 Profibus VLT 5000
		AY : MCA 123 Powerlink
		A8 : MCA 124 EtherCAT

²⁾ Marché des Etats-Unis uniquement

³⁾ La répartition de la charge est intégrée par défaut aux châssis A et B3

Description	Pos.	Choix possibles
Options B	31-32	BX : Pas d'option
		BK : MCB 101 option E/S à usage général
		BR : Option du codeur MCB 102
		BU : Option du résolveur MCB 103
		BP : MCB 105 Carte option 3 relais
		BZ : Interface PLC de sécurité MCB 108
		B2 : Carte thermistance PTC MCB 112
		B4 : Entrée de capteur MCB 114 VLT
		B6 : Option de sécurité MCB 150 TTL
		B7 : Option de sécurité MCB 151 HTL
Options C0	33-34	CX : Pas d'option
		C4 : MCO 305, contrôleur de mouvement programmable
Options C1	35	X : Pas d'option
		R: L'option de relais externe MCB 113
		Z : Option OEM Modbus RTU MCA-140
Logiciel option	36-37	XX : Contrôleur standard
C/options E1		10 : Contrôleur de synchronisation MCO 350
		11 : Contrôleur de positionnement MCO 351
Options D	38-39	DX : Pas d'option
		D0 : Secours 24 V CC MCB 107 ext.

Tableau 7.2 Code type de commande, Options

AVIS!

Pour les puissances supérieures à 75 kW, consulter le Manuel de configuration du VLT® AutomationDrive FC 300 90-1 400 kW.

7.1.2 Langue

Les variateurs de fréquence sont livrés automatiquement avec un ensemble de langues adapté à la région d'où provient la commande. Quatre ensembles régionaux de langues comprennent les langues suivantes :

Ensemble de langues 1	Ensemble de langues 2	Ensemble de langues 3	Ensemble de langues 4
Anglais	Anglais	Anglais	Anglais
Allemand	Allemand	Allemand	Allemand
french	Chinois	Slovène	Espagnol
Danois	Coréen	Bulgare	Anglais américain
Néerlandais	Japonais	Serbe	Grec
Espagnol	Thaï	Roumain	Portugais brésilien
Suédois	Chinois traditionnel	Hongrois	Turc
Italien	Indonésien	Tchèque	Polonais
Finnois		Russe	

Tableau 7.3 Ensembles de langues

Pour commander des variateurs de fréquence avec un autre ensemble de langues, contacter le bureau commercial local .

7.2 Références

7.2.1 Options et accessoires

Description	Référence					
	Non tropicalisé	Tropicalisé				
Kit de montage du panneau VLT®, LCP numérique	130B1114					
it de montage du LCP VLT®, sans LCP	130B1117					
Couvercle aveugle du kit de montage du LCP VLT® IP55/66, 8 m	130B1129					
ranneau de commande LCP 102 VLT®, graphique	130B1078					
Couvercle aveugle VLT®, avec logo Danfoss, IP55/66	130B1077					
Options pour emplacement A	l .					
/LT® Profibus DP V1 MCA 101	130B1100	130B1200				
/LT® DeviceNet MCA 104	130B1102	130B1202				
LT® CAN Open MCA 105	130B1103	130B1205				
onvertisseur VLT® PROFIBUS MCA 113	130B1245					
onvertisseur VLT® PROFIBUS MCA 114		130B1246				
LT® PROFINET MCA 120	130B1135	130B1235				
LT® EtherNet/IP MCA 121	130B1119	130B1219				
'LT® Modbus TCP MCA 122	130B11196	130B1296				
OWERLINK	130B1489	130B1290				
therCAT	130B5546	130B5646				
/LT® DeviceNet MCA 104	130B1102	130B1202				
Options pour emplacement B	1					
/S à usage général MCB 101 VLT®	130B1125	130B1212				
ntrée codeur VLT® MCB 102	130B1115	130B1203				
ntrée résolveur VLT® MCB 103	130B1127	130B1227				
Option relais VLT® MCB 105	130B1110	130B1210				
/S PLC de sécurité VLT® MCB 108	130B1120	130B1210				
Carte thermistance PTC VLT® MCB 112	13001120	130B1220				
Option de sécurité VLT® MCB 140	130B6443	13001137				
Option de sécurité VLT® MCB 141	130B6447					
Option de sécurité VLT® MCB 150	13000447	130B3280				
•		130B3280				
Option de sécurité VLT® MCB 151		13003290				
its de montage des options C	12007520	1				
it de montage VLT® pour option C, 40 mm, protections de types A2/A3	130B7530					
it de montage VLT® pour option C, 60 mm, protections de types A2/A3	130B7531					
it de montage VLT® pour option C, protection de type A5	130B7532					
(it de montage VLT® pour option C, protections de types B/C/D/E/F (sauf B3)	130B7533					
it de montage VLT® pour option C, 40 mm, protection de type B3	130B1413					
it de montage VLT [®] pour option C, 60 mm, protection de type B3	130B1414					
Options pour emplacement C	Language	1,,,,,,,,,				
ontrôleur de mouvement VLT® MCO 305	130B1134	130B1234				
Contr. de synchronisation VLT® MCO 350	130B1152	130B1252				
ontrôleur de position VLT [®] MCO 351	130B1153	120B1253				
ontrôleur bobineuse centrale	130B1165	130B1166				
arte relais étendue VLT [®] MCB 113	130B1164	130B1264				
daptateur de l'option C VLT® MCF 106		130B1230				
ption pour D						
Option d'alimentation 24 V CC VLT® MCB 107	130B1108	130B1208				
'LT® EtherNet/IP MCA 121	175N2584					
(it de moniteur de courant de fuite VLT®, protections de types A2/A3	130B5645					
it de moniteur de courant de fuite VLT®, protection de type B3	130B5764					
(it de moniteur de courant de fuite VLT®, protection de type B4	130B5765					
(it de moniteur de courant de fuite VLT®, protection de type C3	130B6226					

Description	Référence						
	Non tropicalisé	Tropicalisé					
Kit de moniteur de courant de fuite VLT®, protection de type C4	130B5647						
Logiciel PC	·	•					
Outil de contrôle du mouvement VLT [®] MCT 10, 1 licence	130B1000						
Outil de contrôle du mouvement VLT [®] MCT 10, 5 licences	130B1001						
Outil de contrôle du mouvement VLT® MCT 10, 10 licences	130B1002						
Outil de contrôle du mouvement VLT® MCT 10, 25 licences	130B1003						
Outil de contrôle du mouvement VLT® MCT 10, 50 licences	130B1004						
Outil de contrôle du mouvement VLT® MCT 10, 100 licences	130B1005						
Outil de contrôle du mouvement VLT® MCT 10, >100 licences	130B1006						
Il est possible de commander les options en tant qu'options incorporées en usi	ne (voir les informations concernan	t les commandes au					

chapitre 7.1 Système de configuration du variateur).

Tableau 7.4 Références des options et accessoires

7.2.2 Pièces de rechange

Consulter l'atelier VLT ou le système de configuration pour connaître les pièces de rechange disponibles pour vos spécifications, *VLTShop.danfoss.com*.

7.2.3 Sacs d'accessoires

Туре	Description	Référence
Sacs d'accessoires		
Sac d'accessoires A1	Sac d'accessoires, protection de type A1	130B1021
Sac d'accessoires A2/A3	Sac d'accessoires, protections de types A2/A3	130B1022
Sac d'accessoires A5	Sac d'accessoires, protection de type A5	130B1023
Sac d'accessoires A1-A5	Sac d'accessoires, protections de types A1-A5 Connecteur de frein et de	130B0633
	répartition de charge	
Sac d'accessoires B1	Sac d'accessoires, protection de type B1	130B2060
Sac d'accessoires B2	Sac d'accessoires, protection de type B2	130B2061
Sac d'accessoires B3	Sac d'accessoires, protection de type B3	130B0980
Sac d'accessoires B4	Sac d'accessoires, protection de type B4, 18,5-22 kW	130B1300
Sac d'accessoires B4	Sac d'accessoires, protection de type B4, 30 kW	130B1301
Sac d'accessoires C1	Sac d'accessoires, protection de type C1	130B0046
Sac d'accessoires C2	Sac d'accessoires, protection de type C2	130B0047
Sac d'accessoires C3	Sac d'accessoires, protection de type C3	130B0981
Sac d'accessoires C4	Sac d'accessoires, protection de type C4, 55 kW	130B0982
Sac d'accessoires C4	Sac d'accessoires, protection de type C4, 75 kW	130B0983

Tableau 7.5 Références des sacs d'accessoires

7.2.4 VLT AutomationDrive FC 301

T2, Freinage horizontal, cycle d'utilisation 10 %

	FC	301			(Cycle d'utilis	ation de 10	% du freina	ge horizontal		
D			6(Donn	ées de la rés	sistance de f	reinage		Instal	lation
Donne	es du vari	ateur de	fréquence				Référenc	e Danfoss		Section	Th
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	Thermo relais [A]
T2	0,25	368	415,9	410	0,100	175u3004	-	-	-	1,5	0,5
T2	0,37	248	280,7	300	0,100	175u3006	-	-	-	1,5	0,6
T2	0,55	166	188,7	200	0,100	175u3011	-	-	-	1,5	0,7
T2	0,75	121	138,4	145	0,100	175u3016	-	-	-	1,5	0,8
T2	1,1	81,0	92,0	100	0,100	175u3021	-	-	-	1,5	0,9
T2	1,5	58,5	66,5	70	0,200	175u3026	-	-	-	1,5	1,6
T2	2,2	40,2	44,6	48	0,200	175u3031	-	-	-	1,5	1,9
T2	3	29,1	32,3	35	0,300	175u3325	-	-	-	1,5	2,7
T2	3,7	22,5	25,9	27	0,360	175u3326	175u3477	175u3478	-	1,5	3,5
T2	5,5	17,7	19,7	18	0,570	175u3327	175u3442	175u3441	-	1,5	5,3
T2	7,5	12,6	14,3	13	0,680	175u3328	175u3059	175u3060	-	1,5	6,8
T2	11	8,7	9,7	9	1,130	175u3329	175u3068	175u3069	-	2,5	10,5
T2	15	5,3	7,5	5,7	1,400	175u3330	175u3073	175u3074	-	4	15
T2	18,5	5,1	6,0	5,7	1,700	175u3331	175u3483	175u3484	-	4	16
T2	22	3,2	5,0	3,5	2,200	175u3332	175u3080	175u3081	-	6	24
T2	30	3,0	3,7	3,5	2,800	175u3333	175u3448	175u3447	-	10	27
T2	37	2,4	3,0	2,8	3,200	175u3334	175u3086	175u3087	-	16	32

Tableau 7.6 T2, Freinage horizontal, cycle d'utilisation 10 %

	FC	301				Freinag	je vertical, cy	cle d'utilisat	ion 40 %		
Donná	oc du vori	ataur da i	fuámuonao		Donr	nées de la ré	ésistance de 1	freinage		Instal	ation
Donne	es du vari	ateur de i	requence				Référenc	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont.} [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T2	0,25	368	415,9	410	0,100	175u3004	-	-	-	1,5	0,5
T2	0,37	248	280,7	300	0,200	175u3096	-	-	-	1,5	0,8
T2	0,55	166	188,7	200	0,200	175u3008	-	-	-	1,5	0,9
T2	0,75	121	138,4	145	0,300	175u3300	-	-	-	1,5	1,3
T2	1,1	81,0	92,0	100	0,450	175u3301	175u3402	175u3401	-	1,5	2
T2	1,5	58,5	66,5	70	0,570	175u3302	175u3404	175u3403	-	1,5	2,7
T2	2,2	40,2	44,6	48	0,960	175u3303	175u3406	175u3405	-	1,5	4,2
T2	3	29,1	32,3	35	1,130	175u3304	175u3408	175u3407	-	1,5	5,4
T2	3,7	22,5	25,9	27	1,400	175u3305	175u3410	175u3409	-	1,5	6,8
T2	5,5	17,7	19,7	18	2,200	175u3306	175u3412	175u3411	-	1,5	10,4
T2	7,5	12,6	14,3	13	3,200	175u3307	175u3414	175u3413	-	2,5	14,7
T2	11	8,7	9,7	9	5,500	-	175u3176	175u3177	-	4	23
T2	15	5,3	7,5	5,7	6,000	-	-	-	175u3233	10	33
T2	18,5	5,1	6,0	5,7	8,000	-	-	-	175u3234	10	38
T2	22	3,2	5,0	3,5	9,000	-	-	-	175u3235	16	51
T2	30	3,0	3,7	3,5	14,000	-	-	-	175u3224	25	63
T2	37	2,4	3,0	2,8	17,000	-	-	-	175u3227	35	78

Tableau 7.7 T2, Freinage vertical, cycle d'utilisation 40 %

	FC	301				Cycle d'utilis	ation de 10	% du freina	ge horizontal		
Danné					Donn	ées de la rés	sistance de 1	reinage		Instal	lation
Donne	es du vari	ateur de 1	fréquence				Référen	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T4	0,37	1000	1 121,4	1200	0,100	175u3000	-	-	-	1,5	0,3
T4	0,55	620	749,8	850	0,100	175u3001	-	-	-	1,5	0,4
T4	0,75	485	547,6	630	0,100	175u3002	-	-	-	1,5	0,4
T4	1,1	329	365,3	410	0,100	175u3004	-	-	-	1,5	0,5
T4	1,5	240	263,0	270	0,200	175u3007	-	-	-	1,5	0,8
T4	2,2	161	176,5	200	0,200	175u3008	-	-	-	1,5	0,9
T4	3	117	127,9	145	0,300	175u3300	-	-	-	1,5	1,3
T4	4	86,9	94,6	110	0,450	175u3335	175u3450	175u3449	-	1,5	1,9
T4	5,5	62,5	68,2	80	0,570	175u3336	175u3452	175u3451	-	1,5	2,5
T4	7,5	45,3	49,6	56	0,680	175u3337	175u3027	175u3028	-	1,5	3,3
T4	11	34,9	38,0	38	1,130	175u3338	175u3034	175u3035	-	1,5	5,2
T4	15	25,3	27,7	28	1,400	175u3339	175u3039	175u3040	-	1,5	6,7
T4	18,5	20,3	22,3	22	1,700	175u3340	175u3047	175u3048	-	1,5	8,3
T4	22	16,9	18,7	19	2,200	175u3357	175u3049	175u3050	-	1,5	10,1
T4	30	13,2	14,5	14	2,800	175u3341	175u3055	175u3056	-	2,5	13,3
T4	37	10,6	11,7	12	3,200	175u3359	175u3061	175u3062	=	2,5	15,3
T4	45	8,7	9,6	9,5	4,200	-	175u3065	175u3066	-	4	20
T4	55	6,6	7,8	7,0	5,500	-	175u3070	175u3071	-	6	26
T4	75	4,2	5,7	5,5	7,000	-	-	-	175u3231	10	36

Tableau 7.8 T4, Freinage horizontal, cycle d'utilisation 10 %

	FC	301				Freinag	je vertical, cy	cle d'utilisat	ion 40 %		
Danué					Donr	nées de la ré	sistance de	freinage		Instal	lation
Donne	es du vari	ateur de f	requence				Référenc	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T4	0,37	1000	1 121,4	1200	0,200	175u3101	-	-	-	1,5	0,4
T4	0,55	620	749,8	850	0,200	175u3308	-	-	-	1,5	0,5
T4	0,75	485	547,6	630	0,300	175u3309	-	-	-	1,5	0,7
T4	1,1	329	365,3	410	0,450	175u3310	175u3416	175u3415	-	1,5	1
T4	1,5	240	263,0	270	0,570	175u3311	175u3418	175u3417	-	1,5	1,4
T4	2,2	161	176,5	200	0,960	175u3312	175u3420	175u3419	-	1,5	2,1
T4	3	117	127,9	145	1,130	175u3313	175u3422	175u3421	-	1,5	2,7
T4	4	86,9	94,6	110	1,700	175u3314	175u3424	175u3423	-	1,5	3,7
T4	5,5	62,5	68,2	80	2,200	175u3315	175u3138	175u3139	-	1,5	5
T4	7,5	45,3	49,6	56	3,200	175u3316	175u3428	175u3427	-	1,5	7,1
T4	11	34,9	38,0	38	5,000	-	-	-	175u3236	1,5	11,5
T4	15	25,3	27,7	28	6,000	-	-	-	175u3237	2,5	14,7
T4	18,5	20,3	22,3	22	8,000	-	-	-	175u3238	4	19
T4	22	16,9	18,7	19	10,000	-	-	-	175u3203	4	23
T4	30	13,2	14,5	14	14,000	-	-	-	175u3206	10	32
T4	37	10,6	11,7	12	17,000	-	-	-	175u3210	10	38
T4	45	8,7	9,6	9,5	21,000	-	-	-	175u3213	16	47
T4	55	6,6	7,8	7,0	26,000	-	-	-	175u3216	25	61
T4	75	4,2	5,7	5,5	36,000	-	-	-	175u3219	35	81

Tableau 7.9 T4, Freinage vertical, cycle d'utilisation 40 %

7.2.5 Résistances de freinage pour FC 302

	FC	302			(Cycle d'utilis	ation de 10	% du freina	ge horizontal		
Donná	os du vari	atour do	fréquence		Donn	ées de la rés	sistance de f	reinage		Instal	lation
Donne	es du vari	ateur de	requence				Référenc	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	$R_{br.nom}$ [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	de câble [mm²]	relais [A]
T2	0,25	380	475,3	410	0,100	175u3004	-	-	-	1,5	0,5
T2	0,37	275	320,8	300	0,100	175u3006	-	-	-	1,5	0,6
T2	0,55	188	215,7	200	0,100	175u3011	-	-	-	1,5	0,7
T2	0,75	130	158,1	145	0,100	175u3016	-	-	-	1,5	0,8
T2	1,1	81,0	105,1	100	0,100	175u3021	-	-	-	1,5	0,9
T2	1,5	58,5	76,0	70	0,200	175u3026	-	-	-	1,5	1,6
T2	2,2	45,0	51,0	48	0,200	175u3031	-	-	-	1,5	1,9
T2	3	31,5	37,0	35	0,300	175u3325	-	-	-	1,5	2,7
T2	3,7	22,5	29,7	27	0,360	175u3326	175u3477	175u3478	-	1,5	3,5
T2	5,5	17,7	19,7	18	0,570	175u3327	175u3442	175u3441	-	1,5	5,3
T2	7,5	12,6	14,3	13,0	0,680	175u3328	175u3059	175u3060	-	1,5	6,8
T2	11	8,7	9,7	9,0	1,130	175u3329	175u3068	175u3069	-	2,5	10,5
T2	15	5,3	7,5	5,7	1,400	175u3330	175u3073	175u3074	-	4	14,7
T2	18,5	5,1	6,0	5,7	1,700	175u3331	175u3483	175u3484	-	4	16
T2	22	3,2	5,0	3,5	2,200	175u3332	175u3080	175u3081	-	6	24
T2	30	3,0	3,7	3,5	2,800	175u3333	175u3448	175u3447	=	10	27
T2	37	2,4	3,0	2,8	3,200	175u3334	175u3086	175u3087	-	16	32

Tableau 7.10 T2, Freinage horizontal, cycle d'utilisation 10 %

FC 302						ion 40 %					
Donná	oe du vosi	ataur da	fréquence		Donn	ées de la rés	sistance de f	reinage		Instal	lation
Donne	es du vari	ateur de	requence				Référenc	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	$R_{br.nom}$ $[\Omega]$	R _{rec} [Ω]	P _{br.cont.} [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T2	0,25	380	475,3	410	0,100	175u3004	-	-	-	1,5	0,5
T2	0,37	275	320,8	300	0,200	175u3096	-	-	-	1,5	0,8
T2	0,55	188	215,7	200	0,200	175u3008	-	-	-	1,5	0,9
T2	0,75	130	158,1	145	0,300	175u3300	-	-	-	1,5	1,3
T2	1,1	81,0	105,1	100	0,450	175u3301	175u3402	175u3401	-	1,5	2
T2	1,5	58,5	76,0	70	0,570	175u3302	175u3404	175u3403	-	1,5	2,7
T2	2,2	45,0	51,0	48	0,960	175u3303	175u3406	175u3405	-	1,5	4,2
T2	3	31,5	37,0	35	1,130	175u3304	175u3408	175u3407	-	1,5	5,4
T2	3,7	22,5	29,7	27	1,400	175u3305	175u3410	175u3409	-	1,5	6,8
T2	5,5	17,7	19,7	18	2,200	175u3306	175u3412	175u3411	-	1,5	10,4
T2	7,5	12,6	14,3	13,0	3,200	175u3307	175u3414	175u3413	-	2,5	14,7
T2	11	8,7	9,7	9,0	5,500	-	175u3176	175u3177	-	4	23
T2	15	5,3	7,5	5,7	6,000	-	-	-	175u3233	10	33
T2	18,5	5,1	6,0	5,7	8,000	-	-	-	175u3234	10	38
T2	22	3,2	5,0	3,5	9,000	-	-	-	175u3235	16	51
T2	30	3,0	3,7	3,5	14,000	-	-	-	175u3224	25	63
T2	37	2,4	3,0	2,8	17,000	-	-	-	175u3227	35	78

Tableau 7.11 T2, Freinage vertical, cycle d'utilisation 40 %

	FC 302				Cycle d'utilisation de 10 % du freinage horizontal									
Donná	oe du vosi	atour do i	fréquence		Donn	ées de la rés	sistance de f	reinage		Instal	lation			
Donne	es du vari	ateur de i	requence				Référenc	e Danfoss		Section	Thermo			
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]			
T5	0,37	1000	1 389,2	1200	0,100	175u3000	-	-	-	1,5	0,3			
T5	0,55	620	928,8	850	0,100	175u3001	-	-	-	1,5	0,4			
T5	0,75	558	678,3	630	0,100	175u3002	-	-	-	1,5	0,4			
T5	1,1	382	452,5	410	0,100	175u3004	-	-	-	1,5	0,5			
T5	1,5	260	325,9	270	0,200	175u3007	-	-	-	1,5	0,8			
T5	2,2	189	218,6	200	0,200	175u3008	-	-	-	1,5	0,9			
T5	3	135	158,5	145	0,300	175u3300	-	-	-	1,5	1,3			
T5	4	99,0	117,2	110	0,450	175u3335	175u3450	175u3449	-	1,5	1,9			
T5	5,5	72,0	84,4	80	0,570	175u3336	175u3452	175u3451	-	1,5	2,5			
T5	7,5	50,0	61,4	56	0,680	175u3337	175u3027	175u3028	-	1,5	3,3			
T5	11	36,0	41,2	38	1,130	175u3338	175u3034	175u3035	-	1,5	5,2			
T5	15	27,0	30,0	28	1,400	175u3339	175u3039	175u3040	-	1,5	6,7			
T5	18,5	20,3	24,2	22	1,700	175u3340	175u3047	175u3048	-	1,5	8,3			
T5	22	18,0	20,3	19	2,200	175u3357	175u3049	175u3050	-	1,5	10,1			
T5	30	13,4	15,8	14	2,800	175u3341	175u3055	175u3056	-	2,5	13,3			
T5	37	10,8	12,7	12	3,200	175u3359	175u3061	175u3062	-	2,5	15,3			
T5	45	8,8	10,4	9,5	4,200	-	175u3065	175u3066	-	4	20			
T5	55	6,5	8,5	7,0	5,500	-	175u3070	175u3071	-	6	26			
T5	75	4,2	6,2	5,5	7,000	-	-	-	175u3231	10	36			

Tableau 7.12 T5, Freinage horizontal, cycle d'utilisation 10 %

	FC	302				Freinage	vertical, cy	cle d'utilisati	ion 40 %		
5 /					Donn	ées de la rés	sistance de 1	freinage		Instal	lation
Donne	es au var	lateur de 1	fréquence				Référenc	ce Danfoss		Cantian	TI
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom}	R _{rec} [Ω]	P _{br.cont.} [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	Section du câble [mm²]	Thermo relais [A]
T5	0,37	1000	1 389,2	1200	0,200	175u3101	-	-	-	1,5	0,4
T5	0,55	620	928,8	850	0,200	175u3308	-	-	-	1,5	0,5
T5	0,75	558	678,3	630	0,300	175u3309	-	-	-	1,5	0,7
T5	1,1	382	452,5	410	0,450	175u3310	175u3416	175u3415	-	1,5	1
T5	1,5	260	325,9	270	0,570	175u3311	175u3418	175u3417	-	1,5	1,4
T5	2,2	189	218,6	200	0,960	175u3312	175u3420	175u3419	-	1,5	2,1
T5	3	135	158,5	145	1,130	175u3313	175u3422	175u3421	-	1,5	2,7
T5	4	99,0	117,2	110	1,700	175u3314	175u3424	175u3423	-	1,5	3,7
T5	5,5	72,0	84,4	80	2,200	175u3315	175u3138	175u3139	-	1,5	5
T5	7,5	50,0	61,4	56	3,200	175u3316	175u3428	175u3427	-	1,5	7,1
T5	11	36,0	41,2	38	5,000	-	-	-	175u3236	1,5	11,5
T5	15	27,0	30,0	28	6,000	-	-	-	175u3237	2,5	14,7
T5	18,5	20,3	24,2	22	8,000	-	-	-	175u3238	4	19
T5	22	18,0	20,3	19	10,000	-	-	-	175u3203	4	23
T5	30	13,4	15,8	14	14,000	-	-	-	175u3206	10	32
T5	37	10,8	12,7	12	17,000	-	-	-	175u3210	10	38
T5	45	8,8	10,4	9,5	21,000	-	-	-	175u3213	16	47
T5	55	6,5	8,5	7,0	26,000	-	-	-	175u3216	25	61
T5	75	4,2	6,2	5,5	36,000	-	-	-	175u3219	35	81

Tableau 7.13 T5, Freinage vertical, cycle d'utilisation 40 %

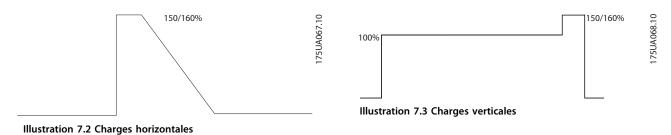
	FC	302			(Cycle d'utilis	ation de 10	% du freina	ge horizontal		
Donná	oe du voui	atour do	fréquence		Donn	ées de la rés	sistance de 1	freinage		Instal	lation
Donne	es du vari	ateur de	requence				Référenc	ce Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	$R_{br.nom}$	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T6	0,75	620	914,2	850	0,100	175u3001	-	-	-	1,5	0,4
T6	1,1	550	611,3	570	0,100	175u3003	-	-	-	1,5	0,4
T6	1,5	380	441,9	415	0,200	175u3005	-	-	-	1,5	0,7
T6	2,2	260	296,4	270	0,200	175u3007	-	-	-	1,5	0,8
T6	3	189	214,8	200	0,300	175u3342	-	-	-	1,5	1,1
T6	4	135	159,2	145	0,450	175u3343	175u3012	175u3013	-	1,5	1,7
T6	5,5	99,0	114,5	100	0,570	175u3344	175u3136	175u3137	-	1,5	2,3
T6	7,5	69,0	83,2	72	0,680	175u3345	175u3456	175u3455	-	1,5	2,9
T6	11	48,6	56,1	52	1,130	175u3346	175u3458	175u3457	-	1,5	4,4
T6	15	35,1	40,8	38	1,400	175u3347	175u3460	175u3459	-	1,5	5,7
T6	18,5	27,0	32,9	31	1,700	175u3348	175u3037	175u3038	-	1,5	7
T6	22	22,5	27,6	27	2,200	175u3349	175u3043	175u3044	-	1,5	8,5
T6	30	17,1	21,4	19	2,800	175u3350	175u3462	175u3461	-	2,5	11,4
T6	37	13,5	17,3	14	3,200	175u3358	175u3464	175u3463	-	2,5	14,2
T6	45	10,8	14,2	13,5	4,200	-	175u3057	175u3058	-	4	17
T6	55	8,8	11,6	11	5,500	-	175u3063	175u3064	-	6	21
T6	75	6,6	8,4	7,0	7,000	-	-	-	175u3245	10	32

Tableau 7.14 T6, Freinage horizontal, cycle d'utilisation 10 %

	FC	302				Freinage	vertical, cy	cle d'utilisati	ion 40 %		
Danné			C., £		Donn	ées de la rés	sistance de f	reinage		Instal	lation
Donne	es du vari	lateur de 1	fréquence				Référenc	e Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	$R_{br.nom}$	R _{rec} [Ω]	P _{br.cont.} [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T6	0,75	620	914,2	850	0,280	175u3317	175u3104	175u3105	-	1,5	0,6
T6	1,1	550	611,3	570	0,450	175u3318	175u3430	175u3429	-	1,5	0,9
T6	1,5	380	441,9	415	0,570	175u3319	175u3432	175u3431	-	1,5	1,1
T6	2,2	260	296,4	270	0,960	175u3320	175u3434	175u3433	-	1,5	1,8
T6	3	189	214,8	200	1,130	175u3321	175u3436	175u3435	-	1,5	2,3
T6	4	135	159,2	145	1,700	175u3322	175u3126	175u3127	-	1,5	3,3
T6	5,5	99,0	114,5	100	2,200	175u3323	175u3438	175u3437	-	1,5	4,4
T6	7,5	69,0	83,2	72	3,200	175u3324	175u3440	175u3439	-	1,5	6,3
T6	11	48,6	56,1	52	5,500	-	175u3148	175u3149	-	1,5	9,7
T6	15	35,1	40,8	38	6,000	-	-	-	175u3239	2,5	12,6
T6	18,5	27,0	32,9	31	8,000	-	-	-	175u3240	4	16
T6	22	22,5	27,6	27	10,000	-	-	-	175u3200	4	19
T6	30	17,1	21,4	19	14,000	-	-	-	175u3204	10	27
T6	37	13,5	17,3	14	17,000	-	-	-	175u3207	10	35
T6	45	10,8	14,2	13,5	21,000	-	-	-	175u3208	16	40
T6	55	8,8	11,6	11	26,000	-	-	-	175u3211	25	49
T6	75	6,6	8,4	7,0	30,000	-	-	-	175u3241	35	66

Tableau 7.15 T6, Freinage vertical, cycle d'utilisation 40 %

	FC	302				Freinage	vertical, cy	cle d'utilisati	on 40 %		
Donná	os du vori	240.11 do 4	fréquence		Donn	ées de la ré	sistance de 1	freinage		Instal	lation
Donne	es du vari	ateur de i	requence				Référenc	ce Danfoss		Section	Thermo
Type secteur	P _m [kW]	R _{min} [Ω]	R _{br.nom} [Ω]	R _{rec} [Ω]	P _{br.cont} . [kW]	Fil IP54	Borne à vis IP21	Borne à vis IP65	Bolt connection IP20	du câble [mm²]	relais [A]
T7	1,1	620	830	630	0,360	-	175u3108	175u3109	ı	1,5	0,8
T7	1,5	513	600	570	0,570	-	175u3110	175u3111	ı	1,5	1
T7	2,2	340	403	415	0,790	-	175u3112	175u3113	1	1,5	1,3
T7	3	243	292	270	1,130	-	175u3118	175u3119	-	1,5	2
T7	4	180	216	200	1,700	-	175u3122	175u3123	-	1,5	2,8
T7	5,5	130	156	145	2,200	-	175u3106	175u3107	-	1,5	3,7
T7	7,5	94	113	105	3,200	-	175u3132	175u3133	-	1,5	5,2
T7	11	69,7	76,2	72	4,200	-	175u3142	175u3143	-	1,5	7,2
T7	15	46,8	55,5	52	6,000	-	-	-	175u3242	2,5	10,8
T7	18,5	36,0	44,7	42	8,000	-	-	-	175u3243	2,5	13,9
T7	22	29,0	37,5	31	10,000	-	-	-	175u3244	4	18
T7	30	22,5	29,1	27	14,000	-	-	-	175u3201	10	23
T7	37	18,0	23,5	22	17,000	-	-	-	175u3202	10	28
T7	45	13,5	19,3	15,5	21,000	-	-	-	175u3205	16	37
T7	55	13,5	15,7	13,5	26,000	-	-	-	175u3209	16	44
T7	75	8,8	11,5	11	36,000	-	-	-	175u3212	25	57


Tableau 7.16 T7, Freinage vertical, cycle d'utilisation 40 %

Freinage horizontal : Cycle d'utilisation 10 % et taux de répétition maximum de 120 s conformément au profil de freinage de référence. La puissance moyenne correspond à 6 %.

Freinage vertical: Cycle d'utilisation 40 % et taux de répétition maximum de 120 s conformément au profil de freinage de référence. La puissance moyenne correspond à 27 %.

Section de câble : Valeur minimale recommandée obtenue à partir d'un câble en cuivre isolé par du PVC, une température ambiante de 30 °C avec dissipation normale de la chaleur.

L'ensemble du câblage doit être conforme aux réglementations nationales et locales en matière de sections de câble et de température ambiante. Relais thermique: Courant de freinage du relais thermique externe. Toutes les résistances sont équipées d'un thermocontact intégré N.F.
L'IP54 est avec un câble fixe de 1 000 mm non blindé. Montages horizontal et vertical. Déclassement requis par le montage horizontal.
IP21 et IP65 sont avec une borne à vis pour l'extrémité de câble. Montages horizontal et vertical. Déclassement requis par le montage horizontal.
L'IP20 est avec un raccordement à boulon pour l'extrémité de câble. Montage au sol.

7.2.6 Autres résistances de freinage flatpack

				Flatpack IP6	5 pour convoyeurs	horizontaux
					Cycle	
FC 301	Pm	R _{min}	R _{fr} ,nom	R _{rec} par élément	d'utilisation	Référence
T2	[kW]	[Ω]	[Ω]	[Ω//W]	[%]	175Uxxxx
PK25	0,25	368	416	430/100	40	1002
PK37	0,37	248	281	330/100 ou 310/200	27 ou 55	1003 ou 0984
PK55	0,55	166	189	220/100 ou 210/200	20 ou 37	1004 ou 0987
PK75	0,75	121	138	150/100 ou 150/200	14 ou 27	1005 ou 0989
P1K1	1,1	81,0	92	100/100 ou 100/200	10 ou 19	1006 ou 0991
P1K5	1,5	58,5	66,5	72/200	14	0992
P2K2	2,2	40,2	44,6	50/200	10	0993
P3K0	3	29,1	32,3	35/200 ou 72/200	7 14	0994 ou 2 x 0992
P3K7	3,7	22,5	25,9	60/200	11	2 x 0996

Tableau 7.17 Autres flatpacks pour variateurs de fréquences avec alimentation secteur FC 301 Secteur : 200-240 V (T2)

				Flatpack IP65 pour convoyeurs horizontaux				
					Cycle			
FC 302	P _m	R _{min}	R _{fr} ,nom	R _{rec} par élément	d'utilisation	Référence		
T2	[kW]	[Ω]	[Ω]	[Ω/W]	[%]	175Uxxxx		
PK25	0,25	380	475	430/100	40	1002		
PK37	0,37	275	321	330/100 ou 310/200	27 ou 55	1003 ou 0984		
PK55	0,55	188	216	220/100 ou 210/200	20 ou 37	1004 ou 0987		
PK75	0,75	130	158	150/100 ou 150/200	14 ou 27	1005 ou 0989		
P1K1	1,1	81,0	105,1	100/100 ou 100/200	10 ou 19	1006 ou 0991		
P1K5	1,5	58,5	76,0	72/200	14	0992		
P2K2	2,2	45,0	51,0	50/200	10	0993		
P3K0	3	31,5	37,0	35/200 ou 72/200	7 ou 14	0994 ou 2 x 0992		
P3K7	3,7	22,5	29,7	60/200	11	2 x 0996		

Tableau 7.18 Autres flatpacks pour variateurs de fréquences avec alimentation secteur

FC 302 Secteur: 200-240 V (T2)

				Flatpack IP6	5 pour convoyeurs	horizontaux
					Cycle	
FC 301	Pm	R _{min}	R _{fr} ,nom	R _{rec} par élément	d'utilisation	Référence
T4	[kW]	[Ω]	[Ω]	[Ω/W]	[%]	175Uxxxx
PK37	0,37	620	1121	830/100	30	1000
PK55	0,55	620	750	830/100	20	1000
PK75	0,75	485	548	620/100 ou 620/200	14 ou 27	1001 ou 0982
P1K1	1,1	329	365	430/100 ou 430/200	10 ou 20	1002 ou 0983
P1K5	1,5	240,0	263,0	310/200	14	0984
P2K2	2,2	161,0	176,5	210/200	10	0987
P3K0	3	117,0	127,9	150/200 ou 300/200	7 ou 14	0989 ou 2 x 0985
P4K0	4	87	95	240/200	10	2 x 0986
P5K5	5,5	63	68	160/200	8	2 x 0988
P7K5	7,5	45	50	130/200	6	2 x 0990
P11K	11	34,9	38,0	80/240	5	2 x 0090
P15K	15	25,3	27,7	72/240	4	2 x 0091

Tableau 7.19 Autres flatpacks pour variateurs de fréquences avec alimentation secteur FC 301 Secteur : 380-480 V (T4)

				Flatpack IP6	5 pour convoyeurs	horizontaux
					Cycle	
FC 302	P _m	R _{min}	R _{fr} ,nom	R _{rec} par élément	d'utilisation	Référence
T5	[kW]	[Ω]	[Ω]	[Ω/W]	[%]	175Uxxxx
PK37	0,37	620	1389	830/100	30	1000
PK55	0,55	620	929	830/100	20	1000
PK75	0,75	558	678	620/100 ou 620/200	14 ou 27	1001 ou 0982
P1K1	1,1	382	453	430/100 ou 430/200	10 ou 20	1002 ou 0983
P1K5	1,5	260,0	325,9	310/200	14	0984
P2K2	2,2	189,0	218,6	210/200	10	0987
P3K0	3	135,0	158,5	150/200 ou 300/200	7 ou 14	0989 ou 2 x 0985
P4K0	4	99	117	240/200	10	2 x 0986
P5K5	5,5	72	84	160/200	8	2 x 0988
P7K5	7,5	50	61	130/200	6	2 x 0990
P11K	11	36,0	41,2	80/240	5	2 x 0090
P15K	15	27,0	30,0	72/240	4	2 x 0091

Tableau 7.20 Autres flatpacks pour variateurs de fréquences avec alimentation secteur FC 302 Secteur : 380-500 V (T5)

L'IP65 est un type flatpack avec câble fixe.

7.2.7 Filtres harmoniques

Les filtres harmoniques sont utilisés pour réduire les harmoniques du secteur.

AHF 010 : distorsion de courant de 10 %
AHF 005 : distorsion de courant de 5 %

Refroidissement et ventilation

IP20 : Refroidi par convection naturelle ou ventilateurs intégrés. IP00 : Un refroidissement forcé supplémentaire est requis. Veiller à garantir un débit d'air suffisant par le filtre pendant l'installation pour empêcher la surchauffe du filtre. Un débit d'air minimum de 2 m/s est nécessaire via le filtre.

	Caractéristiques de Moteur uissance et de courant typique		Courant nominal du filtre 50 Hz	N° de comma	inde AHF 005	N° de commande AHF 010		
[kW]	[A]	[kW]	[A]	IP00	IP20	IP00	IP20	
PK37-P4K0	1,2-9	3	10	130B1392	130B1229	130B1262	130B1027	
P5K5-P7K5	14,4	7,5	14	130B1393	130B1231	130B1263	130B1058	
P11K	22	11	22	130B1394	130B1232	130B1268	130B1059	
P15K	29	15	29	130B1395	130B1233	130B1270	130B1089	
P18K	34	18,5	34	130B1396	130B1238	130B1273	130B1094	
P22K	40	22	40	130B1397	130B1239	130B1274	130B1111	
P30K	55	30	55	130B1398	130B1240	130B1275	130B1176	
P37K	66	37	66	130B1399	130B1241	130B1281	130B1180	
P45K	82	45	82	130B1442	130B1247	130B1291	130B1201	
P55K	96	55	96	130B1443 130B1248		130B1292	130B1204	
P75K	133	75	133	130B1444	130B1249	130B1293	130B1207	

Tableau 7.21 Filtres harmoniques pour 380-415 V, 50 Hz

	Caractéristiques de Moteur issance et de courant typique		Courant nominal du filtre 60 Hz	N° de comma	nde AHF 005	N° de commande AHF 010		
[kW]	[A]	[kW]	[A]	IP00	IP20	IP00	IP20	
PK37-P4K0	1,2-9	3	10	130B3095	130B2857	130B2874	130B2262	
P5K5-P7K5	14,4	7,5	14	130B3096	130B2858	130B2875	130B2265	
P11K	22	11	22	130B3097	130B2859	130B2876	130B2268	
P15K	29	15	29	130B3098	130B2860	130B2877	130B2294	
P18K	34	18,5	34	130B3099	130B2861	130B3000	130B2297	
P22K	40	22	40	130B3124	130B2862	130B3083	130B2303	
P30K	55	30	55	130B3125	130B2863	130B3084	130B2445	
P37K	66	37	66	130B3026	130B2864	130B3085	130B2459	
P45K	82	45	82	130B3127	130B2865	130B3086	130B2488	
P55K	96	55	96	130B3128 130B2866		130B3087	130B2489	
P75K	133	75	133	130B3129	130B2867	130B3088	130B2498	

Tableau 7.22 Filtres harmoniques pour 380-415 V, 60 Hz

Caractéris puissance et		Moteur typique	Courant nominal du filtre 60 Hz	N° de commande AHF 005		filtre N° de commande AHF 005 N° de commande AHF 010			inde AHF 010
[kW]	[A]	[kW]	[A]	IP00	IP20	IP00	IP20		
PK37-P4K0	1-7,4	3	10	130B1787	130B1752	130B1770	130B1482		
P5K5-P7K5	9,9+13	7,5	14	130B1788	130B1753	130B1771	130B1483		
P11K	19	11	19	130B1789	130B1754	130B1772	130B1484		
P15K	25	15	25	130B1790	130B1755	130B1773	130B1485		
P18K	31	18,5	31	130B1791	130B1756	130B1774	130B1486		
P22K	36	22	36	130B1792	130B1757	130B1775	130B1487		
P30K	47	30	48	130B1793	130B1758	130B1776	130B1488		
P37K	59	37	60	130B1794	130B1759	130B1777	130B1491		
P45K	73	45	73	130B1795	130B1760	130B1778	130B1492		
P55K	95	55	95	130B1796	130B1761	130B1779	130B1493		
P75K	118	75	118	130B1797	130B1762	130B1780	130B1494		

Tableau 7.23 Filtres harmoniques pour 440-480 V, 60 Hz

	Caractéristiques de puissance et de courant		Courant nominal du filtre 60 Hz	N° de comma	inde AHF 005	N° de comma	inde AHF 010
[kW]	[A]	[kW]	[A]	IP00	IP20	IP00	IP20
P11K	15	10	15	130B5261	130B5246	130B5229	130B5212
P15K	19	16,4	20	130B5262	130B5247	130B5230	130B5213
P18K	24	20	24	130B5263	130B5248	130B5231	130B5214
P22K	29	24	29	130B5263	130B5248	130B5231	130B5214
P30K	36	33	36	130B5265	130B5250	130B5233	130B5216
P37K	49	40	50	130B5266	130B5251	130B5234	130B5217
P45K	58	50	58	130B5267	130B5252	130B5235	130B5218
P55K	74	60	77	130B5268 130B5253		130B5236	130B5219
P75K	85	75	87	130B5269	130B5254	130B5237	130B5220

Tableau 7.24 Filtres harmoniques pour 600 V, 60 Hz

Caractéris- tiques de puissance et de courant 500-550 V		Moteur typique	Caractéristiques de puissance et de courant		Moteur typique	Courant nominal du filtre 50 Hz	N° de commande AHF 005		N° de co AHF	
[kW]	[A]	[kW]	[kW]	[A]	[kW]	[A]	IP00 IP20		IP00	IP20
P11K	15	7,5	P15K	16	15	15	130B5000	130B5088	130B5297	130B5280
P15K	19,5	11	P18K	20	18,5	20	130B5017	130B5089	130B5298	130B5281
P18K	24	15	P22K	25	22	24	130B5018	130B5090	130B5299	130B5282
P22K	29	18,5	P30K	31	30	29	130B5019	130B5092	130B5302	130B5283
P30K	36	22	P37K	38	37	36	130B5021	130B5125	130B5404	130B5284
P37K	49	30	P45K	48	45	50	130B5022	130B5144	130B5310	130B5285
P45K	59	37	P55K	57	55	58	130B5023	130B5168	130B5324	130B5286
P55K	71	45	P75K	76	75	77	130B5024 130B5169		130B5325	130B5287
P75K	89	55			·	87	130B5025	130B5170	130B5326	130B5288

Tableau 7.25 Filtres harmoniques pour 500-690 V, 50 Hz

7.2.8 Filtres sinus

Caracté	ctéristiques de puissance et de courant des variateu de fréquence				variateurs	Couran	t nominal c	lu filtre	Fréquence de commuta- tion	Réfé	Référence	
200-	-240 V	380-	-440 V	441-	-500 V	50 Hz	60 Hz	100 Hz		IP00	IP20/23 ¹⁾	
[kW]	[A]	[kW]	[A]	[kW]	[A]	[A]	[A]	[A]	[kHz]			
-	-	0,37	1,3	0,37	1,1							
0,25	1,8	0,55	1,8	0,55	1,6	2,5	2,5	2	5	130B2404	130B2439	
0,37	2,4	0,75	2,4	0,75	2,1	İ						
		1,1	3	1,1	3	4.5	4	2.5	_		12002441	
0,55	3,5	1,5	4,1	1,5	3,4	4,5	4	3,5	5	130B2406	130B2441	
0,75	4,6	2,2	5,6	2,2	4,8							
1,1	6,6	3	7,2	3	6,3	8	7,5	5,5	5	130B2408	130B2443	
1,5	7,5	-	-	-	-							
-	-	4	10	4	8,2	10	9,5	7,5	5	130B2409	130B2444	
2,2	10,6	5,5	13	5,5	11							
3	12,5	7,5	16	7,5	14,5	17	16	13	5	130B2411	130B2446	
3,7	16,7	-	-	-	-							
5,5	24,2	11	24	11	21	24	23	18	4	130B2412	130B2447	
7,5	30,8	15	32	15	27	38	36	28,5	4	130B2413	12002440	
7,5	30,6	18,5	37,5	18,5	34	30	30	20,3	4	13002413	130B2448	
11	46,2	22	44	22	40	48	45,5	36	4	130B2281	130B2307	
15	59,4	30	61	30	52	62	59	46,5	3	130B2282	130B2308	
18,5	74,8	37	73	37	65	75	71	56	3	130B2283	130B2309	
22	88	45	90	55	80	115	100	96	2	120P2170	120D2101	
30	115	55	106	75	105	115	109	86	3	130B3179	130B3181*	
37	143	75	147	90	130	180	170	125	2	12002102	130B3183 ³	
45	170	90	177	90	130	100	170	135	3	130B3182	13003163	

Tableau 7.26 Filtre sinus pour variateurs de fréquence avec 380-500 V

 $^{^{1)}}$ Les numéros de commande signalés par un * sont IP23.

Caracté	Caractéristiques de puissance et de courant des variateurs de fréquence						Courant nominal du filtre			Fréquence de Référen tion	
525-	-600 V	69	90 V	525-	-550 V	50 Hz	60 Hz	100 Hz		IP00	IP20/23 ¹⁾
[kW]	[A]	[kW]	[A]	[kW]	[A]	[A]	[A]	[A]	kHz		
0,75	1,7	1,1	1,6								
1,1	2,4	1,5	2,2			4.5	4	3	4	12007225	12007256
1,5	2,7	2,2	3,2	-	-	4,5	4	3	4	130B7335	130B7356
2,2	3,9	3,0	4,5								
3	4,9	4,0	5,5								
4	6,1	5,5	7,5	-	-	10	9	7	4	130B7289	130B7324
5,5	9	7,5	10								
7,5	11	11	13	7,5	14	13	12	9	3	130B3195	130B3196
11	18	15	18	11	19						
15	22	18,5	22	15	23	28	26	21	3	130B4112	130B4113
18,5	27	22	27	18	28						
22	34	30	34	22	36	45	42	33	3	130B4114	130B4115
30	41	37	41	30	48	43	42	33	3	13064114	13064113
37	52	45	52	37	54	76	72	57	3	130B4116	130B4117*
45	62	55	62	45	65	/0	12	3/	3	13004110	13004117"
55	83	75	83	55	87	115	109	86	3	130B4118	130B4119*
75	100	90	100	75	105	113	109	- 00	3	13004110	13004119
90	131	-	-	90	137	165	156	124	2	130B4121	130B4124*

Tableau 7.27 Filtre sinus pour variateurs de fréquence avec 525-690 V

¹⁾ Les numéros de commande signalés par un * sont IP23.

Paramètre	Réglage
14-00 Type modulation	[1] SFAVM
14-01 Fréq. commut.	Configurer conformément à chaque filtre. Ils sont répertoriés sur l'étiquette du filtre et dans le manuel des
	filtres de sortie. Les filtres sinus ne permettent pas de fréquence de commutation inférieure à celles
	spécifiées par le filtre individuel.
14-55 Filtre de sortie	[2] Filtre sinus fixe
14-56 Capacité filtre de sortie	Configurer conformément à chaque filtre. Ils sont répertoriés sur l'étiquette du filtre et dans le manuel des
	filtres de sortie (obligatoire uniquement pour l'exploitation FLUX).
14-57 Inductance filtre de	Configurer conformément à chaque filtre. Ils sont répertoriés sur l'étiquette du filtre et dans le manuel des
sortie	filtres de sortie (obligatoire uniquement pour l'exploitation FLUX).

Tableau 7.28 Réglage des paramètres pour l'exploitation avec un filtre sinus

7.2.9 Filtres dU/dt

		Carac	ctéristiqu	Caractéristiques du variateur de fréquence	iateur de	fréquenc	e [V]				Courant nominal du filtre [V]	al du filtre [V]			Référence	
200-240	40	380-440	140	441-500	200	525-550	550	551-690	069	380 à 60 Hz 200-400/ 440 à 50 Hz	460/480 à 60 Hz 500/525 à 50 Hz	575/600 à 60 Hz	690 à 50 Hz	IP00	IP20*	IP54
[kw]	₹	[kW]	[A]	[kW]	Ā	[kw]	Ā	[kW]	Æ	[¥]	[A]	[A]	[A]			
е	12,5	5,5	13	5,5	11	5,5	9,5	1,1	1,6							
3,7	16	7,5	91	5'/	14,5	2'2	11,5	1,5	2,2							
								2,2	3,2							
								3	4,5	17	15	13	10	N/A	130B7367*	N/A
1	,	,	ı		,	,	,	4	5,5							
								5'5	7,5							
								2'2	10							
5,5	24,2	11	24	11	21	7,5	14	11	13							
7,5	30,8	15	32	15	27	11	19	15	18	,	,	ć	7	1,000,000	7,000001	1,000,000
-	1	18,5	37,5	18,5	34	15	23	18,5	22	†	04	32	/7	13002833	13002830	130B2837
-	-	22	44	22	40	18,5	28	77	27							
11	46,2	30	19	30	52	30	43	30	34							
15	59,4	37	23	28	9	37	54	28	41	G	C	Q		1200200	0.000001	0,00000
18,5	74,8	45	06	55	08	45	92	45	52	0	00	oc	1	13002030	130DZ039	13052040
22	88	-	-	-	-	-	-	-	1							
-	1	2.2	301	34	105	2.2	70	55	62	106	105	80	20	1700001	10203042	0,000001
-	1	CC	001	۲)	5	CC	,	75	83	90	501	+	90	10302041	10302042	10302043
30	115	75	147	06	130	75	113	06	108							
37	143	06	177	-	-	06	137	-	-	177	160	131	108	130B2844	130B2845	130B2846
45	170	-	-	-	-	-	-	-	-							
* Les type	s de pro	tections #	43 dédié	es suppor	tant le mo	ontage en	armoire ,	et le mont	age exte	Les types de protections A3 dédiées supportant le montage en armoire et le montage externe. Raccordement du câble blindé fixe au variateur de fréquence.	nt du câble blir	ndé fixe au varia	ateur de fréque	ence.		

Tableau 7.29 filtres du/dt, 200-690 V

Paramètre	Réglage
14-01 Fréq. commut.	Toute fréquence de commutation supérieure à celle spécifiée par le filtre individuel est déconseillée.
14-55 Filtre de sortie	[0] Pas de filtre
14-56 Capacité filtre de sortie	Non utilisé
14-57 Inductance filtre de sortie	Non utilisé

Manuel de configuration

Tableau 7.30 Réglages des paramètres du filtre dU/dt

8 Installation mécanique

8.1 Sécurité

Voir le chapitre 2 Sécurité pour les consignes de sécurité générales.

▲AVERTISSEMENT

Porter une attention particulière aux exigences applicables au montage en armoire et au montage externe. Respecter impérativement ces règles afin d'éviter des blessures graves ou des dégâts sur l'équipement, notamment dans le cas d'installation d'appareils de grande taille.

AVIS!

Le variateur de fréquence est refroidi par la circulation de l'air.

Afin d'éviter toute surchauffe de l'appareil, s'assurer que la température de l'air ambiant NE dépasse PAS la température maximale indiquée pour le variateur de fréquence et que la température moyenne sur 24 heures N'est PAS dépassée. Consulter la température maximale au *chapitre 6.2.3 Conditions ambiantes*. La température moyenne sur 24 heures est de 5 °C inférieure à la température maximale.

8.2 Encombrement

Type de	e protection		A 1		\2		١3	A4	A5	B1	B2	В3	B4
Power	200-240 V		0,25-1,5	0.2	5-2.2	3-	3,7	0.25-2.2	0.25-3.7	5.5-7.5	11	5.5-7.5	11-15
[kW]	380-480/500) V	0.37-1.5	0.3	7-4.0	5.5	-7.5	0,37-4	0.37-7.5	11-15	18,5-22	11-15	18,5-30
	525-600 V					0.75	5-7.5		0.75-7.5	11-15	18,5-22	11-15	18,5-30
	525-690 V					1.1	-7.5				11-22		11-30
Illustrati	ions		010/2000081		130BA809.10		130BA810.10	0.185498061	1308/80/11	1308481210	130BAB13.10	01928/480E1	1306A827.10
IP			20	20	21	20	21	55/66	55/66	21/55/66	21/55/66	20	20
NEMA			Châssis	Châssis	Type 1	Châssis	Type 1	Type 12/4X	Type 12/4X	Type 1/12/4X	Type 1/12/4X	Châssis	Châssis
Hauteu	r [mm]		•					•					
Hauteui plaque		Α	200	268	375	268	375	390	420	480	650	399	520
		Α	316	374	-	374	-	-	-	-	-	420	595
trous de	e entre les e fixation	a	190	257	350	257	350	401	402	454	624	380	495
Largeur	r [mm]												
Largeur arrière	de plaque	В	75	90	90	130	130	200	242	242	242	165	230
1 -	de plaque avec une C	В	-	130	130	170	170	-	242	242	242	205	230
	de plaque avec deux C	В	-	150	150	190	190	-	242	242	242	225	230
	e entre les e fixation	b	60	70	70	110	110	171	215	210	210	140	200

Tableau 8.1 Encombrement, protections de types A et B

Type d	e protection		A1		12		\3	A4	A5	B1	B2	В3	B4
	200-240 V		0,25-1,5		5-2.2		3,7	0.25-2.2	0.25-3.7	5.5-7.5	11	5.5-7.5	11-15
[kW]	380-480/500	0 V	0.37-1.5		7-4.0		-7.5	0,37-4	0.37-7.5	11-15	18,5-22	11-15	18,5-30
'	525-600 V		0.07 1.0				5-7.5	5,27	0.75-7.5	11-15	18,5-22	11-15	18,5-30
	525-690 V						-7.5		0.757.5		11-22	11.15	11-30
Illustrat	-		OTDL/BMBGE!		130BA809.10		130BAB10.10	0.185480061	1308A811.10	1308A81210	130BA613.10	13084026.10	1306/622/10
IP			20	20	21	20	21	55/66	55/66	21/55/66	21/55/66	20	20
NEMA			Châssis	Châssis	Type 1	Châssis	Type 1	Type 12/4X	Type 12/4X	Type 1/12/4X	Type 1/12/4X	Châssis	Châssis
Profon	deur [mm]												
Profond option	deur sans A/B	C	207	205	207	205	207	175	200	260	260	249	242
Avec o	ption A/B	С	222	220	222	220	222	175	200	260	260	262	242
Trous o	de vis [mm]												•
		С	6,0	8,0	8,0	8,0	8,0	8,25	8,25	12	12	8	-
		d	ø8	ø11	ø11	ø11	ø11	ø12	ø12	ø19	ø19	12	-
		е	ø5	ø5,5	ø5,5	ø5,5	ø5,5	ø6,5	ø6,5	ø9	ø9	6,8	8,5
		f	5	9	9	6,5	6,5	6	9	9	9	7,9	15
Poids r	nax. [kg]		2,7	4,9	5,3	6,6	7,0	9,7	13.5/14.2	23	27	12	23,5
Couple	de serrage (du c	ouvercle	avant [Ni	m]								
	cle en plastiq	lue	Encliqu-	Enclid	uetage	Enclia	uetage	_	-	Encliqu-	Encliqu-	Encliqu-	Encliqu-
(IP bas)			etage	Litting	uetage	LITCHY	uetage	_		etage	etage	etage	etage
Couver (IP55/6	cle en métal 6)		-		-		-	1,5	1,5	2,2	2,2	-	-
			B	A	b.	e d	a a a a a a a a a a a a a a a a a a a			on 8.1 Trous s (B4, C3 et			ırs et

Tableau 8.2 Encombrement, protections de types A et B

Type de prote	ction		C1	C2	C3	C4	D3h
Power	200-240 V		15-22	30-37	18,5-22	30-37	=
[kW]	380-480/500 V		30-45	55-75	37-45	55-75	-
	525-600 V		30-45	55-90	37-45	55-90	=
	525-690 V			30-75	37-45		55-75
Illustrations			130BA814.10	130BA815.10	130BA828.10	130BA829.10	
IP			21/55/66	21/55/66	20	20	20
NEMA			Type 1/12/4X	Type 1/12/4X	Châssis	Châssis	Châssis
Hauteur [mm]							
Hauteur de la _l		Α	680	770	550	660	909
Hauteur avec p découplage po terrain	plaque de our câbles de bus de	А	-	-	630	800	-
Distance entre	les trous de fixation	a	648	739	521	631	-
Largeur [mm]							
Largeur de pla		В	308	370	308	370	250
option C	que arrière avec une	В	308	370	308	370	-
Largeur de pla deux options C	que arrière avec	В	308	370	308	370	-
Distance entre	les trous de fixation	b	272	334	270	330	-
Profondeur [m	ım]						
Profondeur san	ns option A/B	С	310	335	333	333	275
Avec option A/	/B	С	310	335	333	333	275
Trous de vis [r	nm]						
		С	12,5	12,5	-	-	-
		d	ø19	ø19	-	-	-
		е	ø9	ø9	8,5	8,5	-
		f	9,8	9,8	17	17	-
Poids max. [kg			45	65	35	50	62
	rage du couvercle av	ant			<u> </u>		
	plastique (IP bas)		Encliquetage	Encliquetage	2,0	2,0	-
Couvercle en n	netal (IPSS/66)	-	2,2 b e - e	2,2 1308A648 12 a	2,0 Illustration 8.1 Troi (B4, C3 et C4 seule	2,0 re e - re l'arguerie de l	

Tableau 8.3 Encombrement, protections de types C et D

AVIS!

Des sacs d'accessoires contenant les supports, vis et connecteurs nécessaires sont livrés avec les variateurs de fréquence.

8.2.1 Montage mécanique

8.2.1.1 Dégagement

Tous les types de protections permettent une installation côte à côte sauf lorsqu'un kit de protection IP21/IP4X/TYPE 1 est utilisé (voir le *chapitre 11 Options et accessoires*).

Montage côte à côte

Les protections de types IP20 A et B peuvent être organisées côte à côte sans espace entre elles mais l'ordre de montage est important. L'*Illustration 8.1* présente comment monter les châssis correctement.

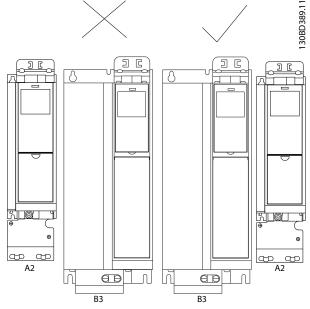
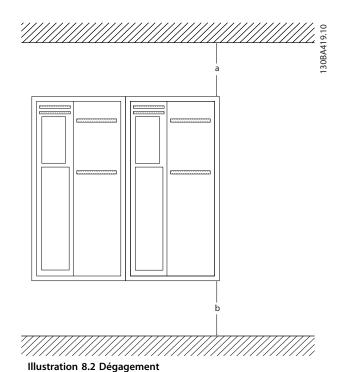



Illustration 8.1 Montage côte à côte correct

Si le kit de protection IP21 est utilisé sur des protections de type A1, A2 ou A3, l'espace entre les variateurs doit être d'au moins 50 mm.

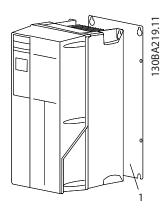
Pour des conditions de refroidissement optimales, il convient de veiller à ce que l'air circule librement audessus et en dessous du variateur de fréquence. Voir le par. *Tableau 8.4*.

Type de protection	A1*/A2/A3/A4/ A5/B1	B2/B3/B4/ C1/C3	C2/C4
a [mm]	100	200	225
b [mm]	100	200	225

Tableau 8.4 Passage d'air pour les différents types de protection

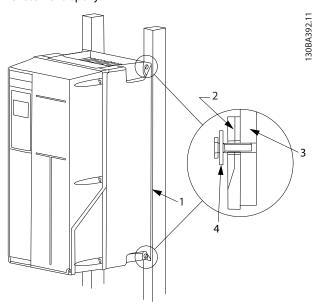
8.2.1.2 Montage mural

En cas de montage sur un mur résistant, l'installation peut être réalisée directement.


- 1. Forer des trous selon les mesures données.
- Prévoir des vis convenant à la surface de montage du variateur de fréquence. Resserrer les 4 vis.

Si le variateur de fréquence est monté sur un mur non résistant, équiper le variateur de fréquence d'une plaque arrière « 1 » en raison de l'insuffisance d'air de refroidissement sur le dissipateur de chaleur.

AVIS!


La plaque arrière convient aux A4, A5, B1, B2, C1 et C2 uniquement.

1 Plaque arrière

Illustration 8.3 Le montage sur un mur non résistant nécessite une plaque arrière

Pour les variateurs de fréquence avec IP66, veiller à entretenir une surface anti-corrosion. Une rondelle en fibres ou en nylon peut être utilisée pour protéger le revêtement époxy.

1	Plaque arrière
2	Variateur de fréquence IP66
3	Socle
4	Rondelle en fibre

Illustration 8.4 Montage sur un mur non résistant

9 Installation électrique

9.1 Sécurité

Voir le *chapitre 2 Sécurité* pour les consignes de sécurité générales.

▲AVERTISSEMENT

TENSION INDUITE

La tension induite des câbles moteur de sortie acheminés ensemble peut charger les condensateurs de l'équipement, même lorsque l'équipement est hors tension et verrouillé. Le fait de ne pas acheminer les câbles du moteur de sortie séparément ou de ne pas utiliser de câbles blindés peut entraîner le décès ou des blessures graves.

- acheminer séparément les câbles du moteur ou
- utiliser des câbles blindés

AATTENTION

CHOC ÉLECTRIQUE

Le variateur de fréquence peut entraîner un courant CC dans le conducteur PE.

 Lorsqu'un relais de protection différentielle (RCD) est utilisé comme protection contre les chocs électriques, seul un différentiel de type B sera autorisé du côté alimentation de ce produit.

Le non-respect de la recommandation signifie que le RCD risque de ne pas fournir la protection prévue.

▲AVERTISSEMENT

RISQUE DE COURANT DE FUITE

Les courants de fuite à la terre dépassent 3,5 mA. Le fait de ne pas mettre le variateur de fréquence à la terre peut entraîner le décès ou des blessures graves.

 L'équipement doit être correctement mis à la terre par un installateur électrique certifié.

Pour la sécurité électrique

- Mettre le variateur de fréquence à la terre conformément aux normes et directives en vigueur.
- Utiliser un fil de terre dédié pour l'alimentation d'entrée, la puissance du moteur et le câblage de commande.
- Ne pas mettre à la terre plusieurs variateurs de fréquence en « guirlande ».
- Raccourcir au maximum les liaisons de mise à la terre.

- Respecter les exigences de câblage spécifiées par le fabricant du moteur.
- Section min. du câble: 10 mm² (ou 2 fils de terre nominaux à la terminaison séparée).

Pour une installation conforme aux critères CEM

- Établir un contact électrique entre le blindage du câble et la protection du variateur de fréquence à l'aide de presse-étoupes métalliques ou des brides fournies avec l'équipement (voir le chapitre 9.4 Raccordement du moteur).
- Utiliser un câble à plusieurs brins pour réduire les interférences électriques.
- Ne pas utiliser de queues de cochon.

AVIS!

ÉOUIPOTENTIALITÉ!

Risque d'interférences électriques lorsque le potentiel de la terre entre le variateur de fréquence et le système est différent. Installer des câbles d'égalisation entre les composants du système. Section de câble recommandée : 16 mm².

▲AVERTISSEMENT

RISQUE DE COURANT DE FUITE

Les courants de fuite à la terre dépassent 3,5 mA. Le fait de ne pas mettre le variateur de fréquence à la terre peut entraîner le décès ou des blessures graves.

 Veiller à la mise à la terre correcte de l'équipement par un installateur électrique certifié.

9.2 Câbles

AVIS!

Câbles, généralités

L'ensemble du câblage doit être conforme aux réglementations nationales et locales en matière de sections de câble et de température ambiante. Des conducteurs (75 °C) en cuivre sont recommandés.

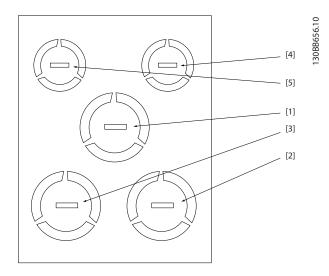
Conducteurs en aluminium

Les bornes peuvent accepter des conducteurs en aluminium mais la surface de ceux-ci doit être nettoyée et l'oxydation éliminée à l'aide de vaseline neutre sans acide avant tout raccordement.

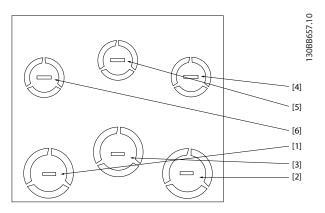
En outre, la vis du bornier doit être resserrée deux jours après en raison de la souplesse de l'aluminium. Il est essentiel de maintenir la connexion étanche aux gaz sous peine de nouvelle oxydation de la surface en aluminium.

9.2.1 Couple de serrage

Type de protection	200-240 V [kW]	380-500 V [kW]	525-690 V [kW]	Câble pour	Couple de serrage [Nm]
A1	0.25-1.5	0.37-1.5	-		
A2	0.25-2.2	0,37-4	-	Cartain of the orange of the transport of the orange of th	
A3	3-3,7	5.5-7.5	1.1-7.5	Secteur, résistance de freinage, répartition de la charge, câbles du moteur	0.5-0.6
A4	0.25-2.2	0,37-4		- Cables du moteur	
A5	3-3,7	5.5-7.5	-		
				Secteur, résistance de freinage, répartition de la charge, câbles du moteur	1,8
B1	5.5-7.5	11-15	-	Relais	0.5-0.6
				Terre	2-3
				Secteur, résistance de freinage, câbles de répartition de la charge	4,5
B2	11	18,5-22	11-22	Câbles moteur	4.5
				Relais	0.5-0.6
				Terre	2-3
				Secteur, résistance de freinage, répartition de la charge, câbles du moteur	1,8
B3	5.5-7.5	11-15	-	Relais	0.5-0.6
				Terre	2-3
				Secteur, résistance de freinage, répartition de la charge, câbles du moteur	4,5
B4	11-15	18,5-30	11-30	Relais	0.5-0.6
				Terre	2-3
				Secteur, résistance de freinage, câbles de répartition de la charge	10
C1	15-22	30-45	-	Câbles moteur	10
			Relais	0.5-0.6	
				Terre	2-3
				Secteur, câbles du moteur	14 (jusqu'à 95 mm²) 24 (plus de 95 mm²)
C2	30-37	55-75	30-75	Répartition de la charge, câbles de la résistance de freinage	14
C2 30-37 55-75				Relais	0.5-0.6
				Terre	2-3
				Secteur, résistance de freinage, répartition de la charge, câbles du moteur	10
C3	18,5-22	30-37	37-45	Relais	0.5-0.6
				Terre	2-3
				Secteur, câbles du moteur	14 (jusqu'à 95 mm²) 24 (plus de 95 mm²)
C4	37-45	55-75	-	Répartition de la charge, câbles de la résistance de freinage	<u> </u>
				Relais Terre	0.5-0.6 2-3
				Licite	123


Tableau 9.1 Couple de serrage pour les câbles

9.2.2 Orifices d'entrée


- Enlever l'entrée de câble du variateur de fréquence (en évitant la pénétration de corps étrangers dans le variateur de fréquence lors du démontage des débouchures).
- 2. L'entrée de câble doit être soutenue autour de la débouchure à démonter.
- 3. La débouchure peut maintenant être enlevée à l'aide d'un mandrin solide et d'un marteau.
- 4. Éliminer les bavures autour du trou.
- 5. Monter l'entrée de câble sur le variateur de fréquence.

L'utilisation proposée des orifices n'est qu'une suggestion mais d'autres solutions sont possibles. Les entrées de câble inutilisées doivent être fermées de façon étanche à l'aide d'œillets en caoutchouc (pour IP21).

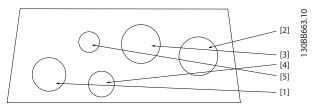
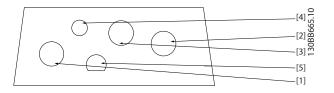

Nombre d'orifices et	Dimensio	ns ¹⁾	Mesure
utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	3/4	28,4	M25
2) Moteur	3/4	28,4	M25
3) Frein/répartition de la	3/4	28,4	M25
charge			
4) Câble de commande	1/2	22,5	M20
5) Câble de commande	1/2	22,5	M20
1) Tolérance ± 0,2 mm			

Illustration 9.1 A2 - IP21

Nombre	Dimen	sions ¹⁾	Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	3/4	28,4	M25
2) Moteur	3/4	28,4	M25
3) Frein/ répartition de la charge	3/4	28,4	M25
4) Câble de commande	1/2	22,5	M20
5) Câble de commande	1/2	22,5	M20
6) Câble de commande	1/2	22,5	M20
¹⁾ Tolérance ± 0,	2 mm	<u> </u>	-

Illustration 9.2 A3 - IP21



Nombre	Dimer	rsions ¹⁾	Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	3/4	28,4	M25
2) Moteur	3/4	28,4	M25
3) Frein/	3/4	28,4	M25
répartition de			
la charge			
4) Câble de	1/2	22,5	M20
commande			
5) Supprimé	-	-	-
1) Tolérance ± 0,	,2 mm		

Illustration 9.3 A4 - IP55

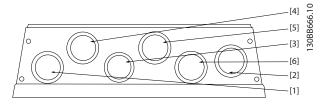

Nombre d'orifices et utilisation	Mesure métrique
recommandée	la plus proche
1) Secteur	M25
2) Moteur	M25
3) Frein/répartition de la charge	M25
4) Câble de commande	M16
5) Câble de commande	M20

Illustration 9.4 Orifices de presse-étoupe fileté A4 - IP55

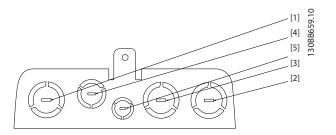
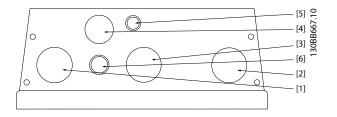
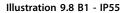

Nombre	Dimen	sions ¹⁾	Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	3/4	28,4	M25
2) Moteur	3/4	28,4	M25
3) Frein/	3/4	28,4	M25
répartition de			
la charge			
4) Câble de	3/4	28,4	M25
commande			
5) Câble de	3/4	28,4	M25
commande ²⁾			
6) Câble de	3/4	28,4	M25
commande ²⁾			
¹⁾ Tolérance ± 0,2 mm			
²⁾ Orifice de débouchure			

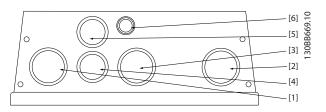
Illustration 9.5 A5 - IP55

Nombre d'orifices et utilisation	Mesure métrique la
recommandée	plus proche
1) Secteur	M25
2) Moteur	M25
3) Frein/répartition de la charge	28,4 mm ¹⁾
4) Câble de commande	M25
5) Câble de commande	M25
6) Câble de commande	M25
¹⁾ Orifice de débouchure	

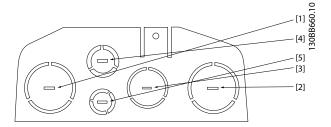

Illustration 9.6 Orifices de presse-étoupe A5 - IP55

Nombre	Dimensions ¹⁾		Mesure	
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche	
1) Secteur	1	34,7	M32	
2) Moteur	1	34,7	M32	
3) Frein/	1	34,7	M32	
répartition de				
la charge				
4) Câble de	1	34,7	M32	
commande				
5) Câble de	1/2	22,5	M20	
commande				
1) Tolérance ± 0,2 mm				


Illustration 9.7 B1 - IP21



Nombre	Dimen	isions ¹⁾	Mesure	
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche	
1) Secteur	1	34,7	M32	
2) Moteur	1	34,7	M32	
3) Frein/	1	34,7	M32	
répartition de				
la charge				
4) Câble de	3/4	28,4	M25	
commande				
5) Câble de	1/2	22,5	M20	
commande				
5) Câble de	1/2	22,5	M20	
commande ²⁾				


¹⁾ Tolérance ± 0,2 mm
2) Orifice de débouchure

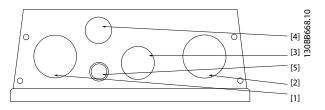
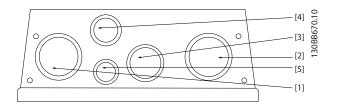

Nombre d'orifices et utilisation	Mesure métrique la
recommandée	plus proche
1) Secteur	M32
2) Moteur	M32
3) Frein/répartition de la charge	M32
4) Câble de commande	M25
5) Câble de commande	M25
6) Câble de commande	22,5 mm ¹⁾
1) Orifice de débouchure	_

Illustration 9.9 Orifices de presse-étoupe B1 - IP55

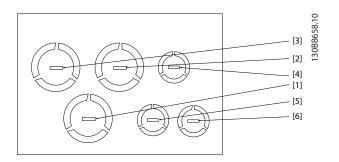
Nombre	Dimensions ¹⁾		Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	1 1/4	44,2	M40
2) Moteur	1 1/4	44,2	M40
3) Frein/	1	34,7	M32
répartition de			
la charge			
4) Câble de	3/4	28,4	M25
commande			
5) Câble de	1/2	22,5	M20
commande			
1) Tolérance ± 0,2 mm			

Illustration 9.10 B2 - IP21



Nombre	Dimensions ¹⁾		Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	1 1/4	44,2	M40
2) Moteur	1 1/4	44,2	M40
3) Frein/	1	34,7	M32
répartition de			
la charge			
4) Câble de	3/4	28,4	M25
commande			
5) Câble de	1/2	22,5	M20
commande ²⁾			
1) Tolérance ± 0,2 mm			

Illustration 9.11 B2 - IP55


²⁾ Orifice de débouchure

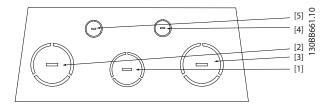

Nombre d'orifices et utilisation	Mesure métrique
recommandée	la plus proche
1) Secteur	M40
2) Moteur	M40
3) Frein/répartition de la charge	M32
4) Câble de commande	M25
5) Câble de commande	M20

Illustration 9.12 Orifices de presse-étoupe B2 - IP55

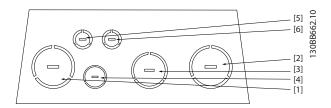

Dimen	Mesure	
UL [pouce]	[mm]	métrique la plus proche
1	34,7	M32
1	34,7	M32
1	34,7	M32
1/2	22,5	M20
1/2	22,5	M20
1/2	22,5	M20
	UL [pouce] 1 1 1 1 1/2 1/2	UL [pouce] [mm] 1 34,7 1 34,7 1 34,7 1/2 22,5 1/2 22,5 1/2 22,5 1/2 22,5

Illustration 9.13 B3 - IP21

Nombre	Dimensions ¹⁾		Mesure
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche
1) Secteur	2	63,3	M63
2) Moteur	2	63,3	M63
3) Frein/	1 1/2	50,2	M50
répartition de			
la charge			
4) Câble de	3/4	28,4	M25
commande			
5) Câble de	1/2	22,5	M20
commande			
1) Tolérance ± 0,2 mm			

Illustration 9.14 C1 - IP21

Nombre	Dimen	sions ¹⁾	Mesure	
d'orifices et utilisation recommandée	UL [pouce]	[mm]	métrique la plus proche	
1) Secteur	2	63,3	M63	
2) Moteur	2	63,3	M63	
3) Frein/	1 1/2	50,2	M50	
répartition de				
la charge				
4) Câble de	3/4	28,4	M25	
commande				
5) Câble de	1/2	22,5	M20	
commande				
6) Câble de	1/2	22,5	M20	
commande				
1) Tolérance ±0,2 mm				

Illustration 9.15 C2 - IP21

9.2.3 Serrage du couvercle après les raccordements

Type de				
protection	IP20	IP21	IP55	IP66
A1	*	-	-	-
A2	*	*	-	-
A3	*	*	-	-
A4/A5	-	-	2	2
B1	-	*	2,2	2,2
B2	-	*	2,2	2,2
В3	*	-	-	-
B4	*	-	-	-
C1	-	*	2,2	2,2
C2	-	*	2,2	2,2
C3	2	-	-	-
C4	2	-	-	-
* = aucune vis à serrer				
- = n'existe pas				

Tableau 9.2 Serrage du couvercle (Nm)

9.3 Mise sous tension

Il est obligatoire de mettre l'alimentation à la terre en utilisant la borne 95 du variateur de fréquence (voir le chapitre 9.1.1 Mise à la terre).

La section de câble du raccordement à la terre doit être d'au moins 10 mm² ou 2 fils de tension secteur doivent comporter des terminaisons séparées conformément à la norme EN 50178.

Utiliser un câble non blindé.

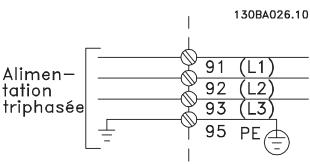


Illustration 9.16 Mise sous tension

AVIS!

L'utilisation de fusibles et/ou de disjoncteurs du côté alimentation est obligatoire afin d'assurer la conformité aux normes CEI 60364 pour CE et NEC 2009 pour UL (voir le *chapitre 9.3.1.4 Conformité UL*).

AVIS!

Au-delà 480 V RMS

RISQUE DE DOMMAGE SUR LE VARIATEUR DE FRÉQUENCE AVEC UN FILTRE RFI INSTALLÉ

En cas d'installation sur un réseau mis à la terre en étoile ou IT (notamment un état de défaut de terre), la tension d'entrée secteur dans la plage de 380-500 V (T4, T5) ne doit pas dépasser 480 V RMS entre le secteur et la terre.

Pour certaines protections, le montage est différent si le variateur de fréquence est configuré à l'usine avec un commutateur secteur. Les différents scénarii sont illustrés ci-après.

Raccordement secteur des protections A1, A2 et A3 :

Le connecteur embrochable de puissance peut être utilisé sur les variateurs de fréquence jusqu'à 7,5 kW.

- Insérer les deux vis dans la plaque de découplage, positionner cette dernière et serrer les vis.
- S'assurer que le variateur de fréquence est mis correctement à la terre. Raccorder à la prise de terre (borne 95). Utiliser une vis du sac d'accessoires.
- Placer le connecteur embrochable 91 (L1), 92 (L2), 93 (L3) du sac d'accessoires sur les bornes étiquetées MAINS à la base du variateur de fréquence.
- Fixer les fils secteur sur le connecteur embrochable secteur.
- 5. Soutenir le câble avec les supports fournis.

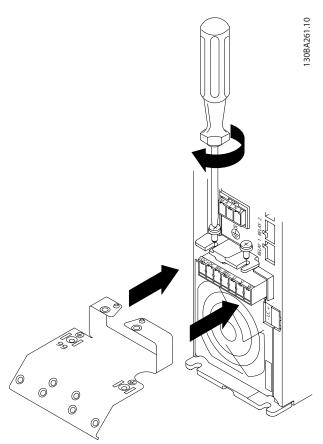


Illustration 9.17 Plaque support

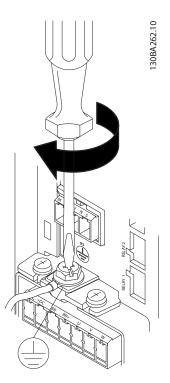


Illustration 9.18 Serrage du câble de terre

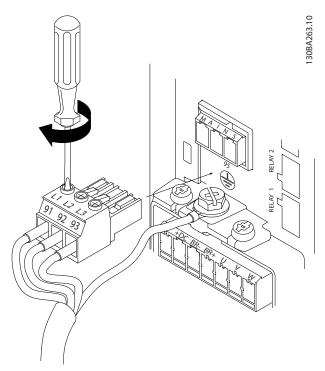


Illustration 9.19 Montage de la fiche secteur et serrage des fils

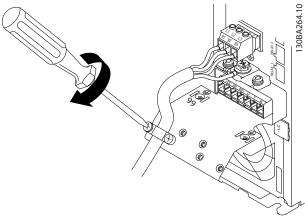


Illustration 9.20 Serrer la patte de fixation

Protections A4/A5 des connecteurs secteur

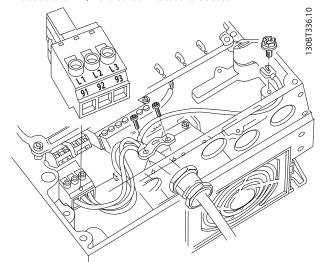


Illustration 9.21 Connexion au secteur et à la terre sans sectionneur

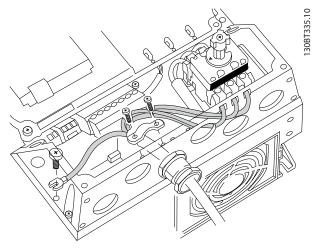


Illustration 9.22 Connexion au secteur et à la terre avec sectionneur

En cas d'utilisation d'un sectionneur (protections A4/A5), monter la terre sur le côté gauche du variateur de fréquence.

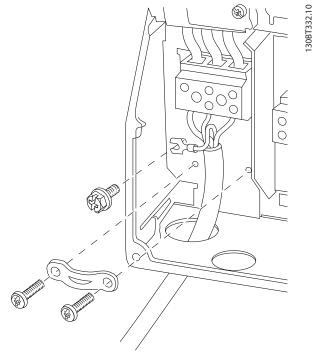


Illustration 9.23 Raccordement au secteur des protections B1 et B2

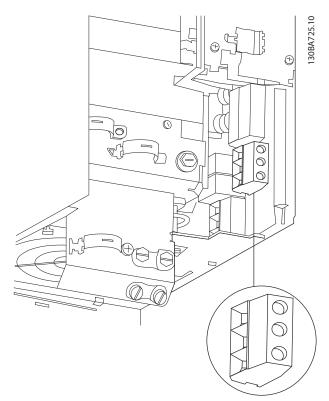


Illustration 9.24 Raccordement au secteur de la protection B3

130BA389.10

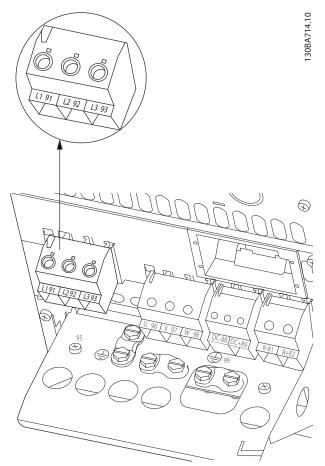


Illustration 9.25 Raccordement secteur protection B4

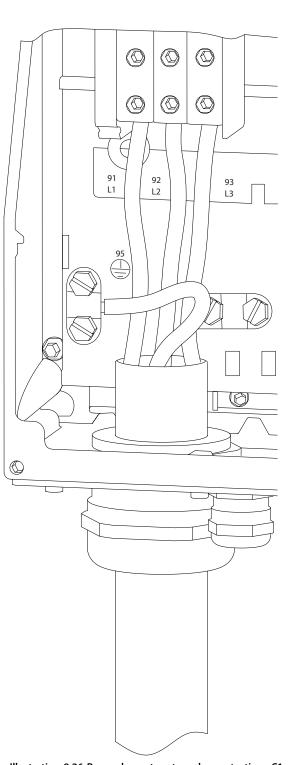


Illustration 9.26 Raccordement secteur des protections C1 et C2 (IP21/NEMA Type 1 et IP55/66/NEMA Type 12).

30BA718.10

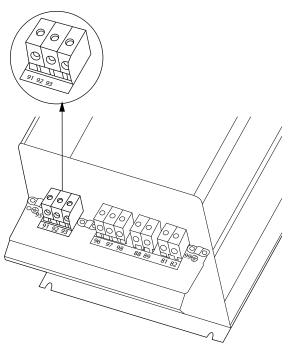


Illustration 9.27 Raccordement au secteur protections C3 (IP20).

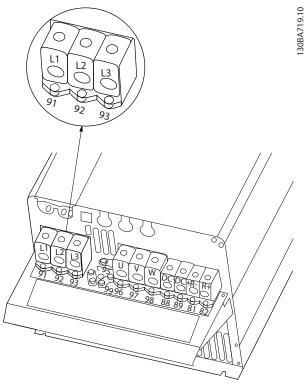


Illustration 9.28 Raccordement au secteur protections C4 (IP20).

9.3.1 Fusibles et disjoncteurs

9.3.1.1 Fusibles

Il est recommandé d'utiliser des fusibles et/ou des disjoncteurs du côté de l'alimentation comme protection en cas de panne d'un composant interne au variateur de fréquence (première panne).

AVIS!

L'utilisation de fusibles et/ou de disjoncteurs du côté alimentation est obligatoire afin d'assurer la conformité les normes CEI 60364 pour CE et NEC 2009 pour UL.

Protection du circuit de dérivation

Pour protéger l'installation contre les risques électriques et d'incendie, tous les circuits de dérivation d'une installation, d'un appareillage de connexion, de machines, etc. doivent être protégés contre les courts-circuits et les surcourants, conformément aux réglementations nationales et internationales.

AVIS!

Pour UL, les recommandations données ne traitent pas la protection du circuit de dérivation.

Protection contre les courts-circuits

Danfoss recommande d'utiliser les fusibles/disjoncteurs mentionnés ci-dessous pour protéger le personnel d'entretien et l'équipement en cas de panne d'un composant interne au variateur de fréquence.

9.3.1.2 Recommandations

Les tableaux du *chapitre 9.3.1 Fusibles et disjoncteurs* donnent la liste des courants nominaux recommandés. Les fusibles de type gG sont recommandés pour des puissances faibles à moyennes. Pour des puissances plus élevées, les fusibles aR sont recommandés. Les disjoncteurs de type Moeller sont recommandés. Il est possible d'utiliser d'autres types de disjoncteur à condition que leur énergie dans le variateur de fréquence se limite à un seuil inférieur ou équivalent à celui des disjoncteurs de type Moeller.

Si des fusibles/disjoncteurs conformes aux recommandations sont utilisés, les dommages éventuels du variateur de fréquence se limitent principalement à des dommages internes à l'unité.

Voir la note applicative Fusibles et disjoncteurs MN90T pour plus d'informations.

9.3.1.3 Conformité CE

Les fusibles et les disjoncteurs doivent obligatoirement être conformes à la norme CEI 60364. Danfoss recommande l'utilisation de la sélection suivante :

L'utilisation des fusibles ci-dessous convient sur un circuit capable de fournir 100 000 A_{rms} (symétriques), 240 V, 500 V, 600 V ou 690 V en fonction de la tension nominale du variateur de fréquence. Avec des fusibles adaptés, le courant nominal de court-circuit du variateur de fréquence (SCCR) s'élève à 100 000 A_{rms}.

Les fusibles homologués UL suivants conviennent :

- Fusibles UL248-4 classe CC
- Fusibles UL248-8 classe J
- Fusibles UL248-12 classe R (RK1)
- Fusibles UL248-15 classe T

Les tailles max. et les types de fusible suivants ont été testés :

Protection	Puissance [kW]	Taille de fusible	Fusible	Disjoncteur	Seuil de déclen-
		recommandée	max. recommandé	recommandé	chement max. [A]
				Moeller	
A1	0.25-1.5	gG-10	gG-25	PKZM0-10	10
A2	0.25-2.2	gG-10 (0,25-1,5)	gG-25	PKZM0-16	16
		gG-16 (2,2)			
A3	3.0-3.7	gG-16 (3)	gG-32	PKZM0-25	25
		gG-20 (3,7)			
A4	0.25-2.2	gG-10 (0,25-1,5)	gG-32	PKZM0-25	25
		gG-16 (2,2)			
A5	0.25-3.7	gG-10 (0,25-1,5)	gG-32	PKZM0-25	25
		gG-16 (2,2-3)			
		gG-20 (3,7)			
B1	5.5-7.5	gG-25 (5,5)	gG-80	PKZM4-63	63
		gG-32 (7,5)			
B2	11	gG-50	gG-100	NZMB1-A100	100
В3	5,5	gG-25	gG-63	PKZM4-50	50
B4	7,5-15	gG-32 (7,5)	gG-125	NZMB1-A100	100
		gG-50 (11)			
		gG-63 (15)			
C1	15-22	gG-63 (15)	gG-160 (15-18,5)	NZMB2-A200	160
		gG-80 (18,5)	aR-160 (22)		
		gG-100 (22)			
C2	30-37	aR-160 (30)	aR-200 (30)	NZMB2-A250	250
		aR-200 (37)	aR-250 (37)		
C3	18,5-22	gG-80 (18,5)	gG-150 (18,5)	NZMB2-A200	150
		aR-125 (22)	aR-160 (22)		
C4	30-37	aR-160 (30)	aR-200 (30)	NZMB2-A250	250
		aR-200 (37)	aR-250 (37)		

Tableau 9.3 200-240 V, types de protection A, B et C

Protection	Puissance [kW]	Taille de fusible	Fusible	Disjoncteur	Seuil de déclen-
		recommandée	max. recommandé	recommandé Moeller	chement max. [A]
A1	0.37-1.5	gG-10	gG-25	PKZM0-10	10
A2	0.37-4.0	gG-10 (0,37-3)	gG-25	PKZM0-16	16
		gG-16 (4)			
A3	5.5-7.5	gG-16	gG-32	PKZM0-25	25
A4	0,37-4	gG-10 (0,37-3)	gG-32	PKZM0-25	25
		gG-16 (4)			
A5	0.37-7.5	gG-10 (0,37-3)	gG-32	PKZM0-25	25
		gG-16 (4-7,5)			
B1	11-15	gG-40	gG-80	PKZM4-63	63
B2	18,5-22	gG-50 (18,5)	gG-100	NZMB1-A100	100
		gG-63 (22)			
В3	11-15	gG-40	gG-63	PKZM4-50	50
B4	18,5-30	gG-50 (18,5)	gG-125	NZMB1-A100	100
		gG-63 (22)			
		gG-80 (30)			
C1	30-45	gG-80 (30)	gG-160	NZMB2-A200	160
		gG-100 (37)			
		gG-160 (45)			
C2	55-75	aR-200 (55)	aR-250	NZMB2-A250	250
		aR-250 (75)			
C3	37-45	gG-100 (37)	gG-150 (37)	NZMB2-A200	150
		gG-160 (45)	gG-160 (45)		
C4	55-75	aR-200 (55)	aR-250	NZMB2-A250	250
		aR-250 (75)			

Tableau 9.4 380-500 V, protections de types A, B et C

Protection	Puissance [kW]	Taille de fusible	Fusible	Disjoncteur	Seuil de déclen-
		recommandée	max. recommandé	recommandé	chement max. [A]
				Moeller	
A2	0-75-4,0	gG-10	gG-25	PKZM0-16	16
A3	5.5-7.5	gG-10 (5,5)	gG-32	PKZM0-25	25
		gG-16 (7,5)			
A5	0.75-7.5	gG-10 (0,75-5,5)	gG-32	PKZM0-25	25
		gG-16 (7,5)			
B1	11-18	gG-25 (11)	gG-80	PKZM4-63	63
		gG-32 (15)			
		gG-40 (18,5)			
B2	22-30	gG-50 (22)	gG-100	NZMB1-A100	100
		gG-63 (30)			
В3	11-15	gG-25 (11)	gG-63	PKZM4-50	50
		gG-32 (15)			
B4	18,5-30	gG-40 (18,5)	gG-125	NZMB1-A100	100
		gG-50 (22)			
		gG-63 (30)			
C1	37-55	gG-63 (37)	gG-160 (37-45)	NZMB2-A200	160
		gG-100 (45)	aR-250 (55)		
		aR-160 (55)			
C2	75	aR-200 (75)	aR-250	NZMB2-A250	250
C3	37-45	gG-63 (37)	gG-150	NZMB2-A200	150
		gG-100 (45)			
C4	55-75	aR-160 (55)	aR-250	NZMB2-A250	250
		aR-200 (75)			

Tableau 9.5 525-600 V, types de protection A, B et C

Protection	Puissance [kW]	Taille de fusible recommandée	Fusible max. recommandé	Disjoncteur recommandé Moeller	Seuil de déclen- chement max. [A]
A3	1,1	gG-6	gG-25	PKZM0-16	16
	1,5	gG-6	gG-25		
	2,2	gG-6	gG-25		
	3	gG-10	gG-25		
	4	gG-10	gG-25		
	5,5	gG-16	gG-25		
	7,5	gG-16	gG-25		
B2/B4	11	gG-25 (11)	gG-63	-	-
	15	gG-32 (15)			
	18	gG-32 (18)			
	22	gG-40 (22)			
B4/C2	30	gG-63 (30)	gG-80 (30)	-	-
C2/C3	37	gG-63 (37)	gG-100 (37)		
	45	gG-80 (45)	gG-125 (45)		
C2	55	gG-100 (55)	gG-160 (55-75)		
	75	gG-125 (75)			

Tableau 9.6 525-690 V, protections de types A, B et C

9.3.1.4 Conformité UL

L'utilisation des fusibles ci-dessous convient sur un circuit capable de fournir 100 000 A_{rms} (symétriques), 240 V, 500 V ou 600 V en fonction de la tension nominale du variateur de fréquence. Avec des fusibles adaptés, le courant nominal de court-circuit du variateur de fréquence (SCCR) est de 100 000 A_{rms} .

Les fusibles et les disjoncteurs doivent obligatoirement être conformes à la norme NEC 2009. Danfoss recommande l'utilisation de la sélection suivante :

	Taille de fusible max. recommandée					
Puissance	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
[kW]	Type RK1 ¹⁾	Type J	Type T	Type CC	Type CC	Type CC
0.25-0.37	KTN-R-05	JKS-05	JJN-05	FNQ-R-5	KTK-R-5	LP-CC-5
0.55-1.1	KTN-R-10	JKS-10	JJN-10	FNQ-R-10	KTK-R-10	LP-CC-10
1,5	KTN-R-15	JKS-15	JJN-15	FNQ-R-15	KTK-R-15	LP-CC-15
2,2	KTN-R-20	JKS-20	JJN-20	FNQ-R-20	KTK-R-20	LP-CC-20
3,0	KTN-R-25	JKS-25	JJN-25	FNQ-R-25	KTK-R-25	LP-CC-25
3,7	KTN-R-30	JKS-30	JJN-30	FNQ-R-30	KTK-R-30	LP-CC-30
5.5	KTN-R-50	KS-50	JJN-50	-	-	-
7,5	KTN-R-60	JKS-60	JJN-60	-	-	-
11	KTN-R-80	JKS-80	JJN-80	-	-	-
15-18,5	KTN-R-125	JKS-125	JJN-125	-	-	-
22	KTN-R-150	JKS-150	JJN-150	-	=	-
30	KTN-R-200	JKS-200	JJN-200	-	=	-
37	KTN-R-250	JKS-250	JJN-250	-	-	-

Tableau 9.7 200-240 V, Protections de types A, B et C

	Taille de fusible max. recommandée						
Puissance [kW]	SIBA Type RK1	Littel fuse Type RK1	Ferraz- Shawmut Type CC	Ferraz- Shawmut Type RK1 ³⁾			
0.25-0.37	5017906-005	KLN-R-05	ATM-R-05	A2K-05-R			
0.55-1.1	5017906-010	KLN-R-10	ATM-R-10	A2K-10-R			
1,5	5017906-016	KLN-R-15	ATM-R-15	A2K-15-R			
2,2	5017906-020	KLN-R-20	ATM-R-20	A2K-20-R			
3,0	5017906-025	KLN-R-25	ATM-R-25	A2K-25-R			
3,7	5012406-032	KLN-R-30	ATM-R-30	A2K-30-R			
5.5	5014006-050	KLN-R-50	-	A2K-50-R			
7,5	5014006-063	KLN-R-60	-	A2K-60-R			
11	5014006-080	KLN-R-80	-	A2K-80-R			
15-18,5	2028220-125	KLN-R-125	-	A2K-125-R			
22	2028220-150	KLN-R-150	-	A2K-150-R			
30	2028220-200	KLN-R-200	-	A2K-200-R			
37	2028220-250	KLN-R-250	-	A2K-250-R			

Tableau 9.8 200-240 V, Protections de types A, B et C

		andée		
Puissance [kW]	Bussmann Type JFHR2 ²⁾	Littel fuse JFHR2	Ferraz- Shawmut JFHR2 ⁴⁾	Ferraz- Shawmut J
0.25-0.37	FWX-5	-	-	HSJ-6
0.55-1.1	FWX-10	-	-	HSJ-10
1,5	FWX-15	-	-	HSJ-15
2,2	FWX-20	-	-	HSJ-20
3,0	FWX-25	-	-	HSJ-25
3,7	FWX-30	-	-	HSJ-30
5.5	FWX-50	-	-	HSJ-50
7,5	FWX-60	-	-	HSJ-60
11	FWX-80	-	-	HSJ-80
15-18,5	FWX-125	-	-	HSJ-125
22	FWX-150	L25S-150	A25X-150	HSJ-150
30	FWX-200	L25S-200	A25X-200	HSJ-200
37	FWX-250	L25S-250	A25X-250	HSJ-250

Tableau 9.9 200-240 V, Protections de types A, B et C

⁴⁾ Les fusibles A50X de FERRAZ SHAWMUT peuvent remplacer les fusibles A25X pour les variateurs de fréquence de 240 V.

	Taille de fusible max. recommandée					
Puissance	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
[kW]	Type RK1	Type J	Type T	Type CC	Type CC	Type CC
0,37-1.1	KTS-R-6	JKS-6	JJS-6	FNQ-R-6	KTK-R-6	LP-CC-6
1.5-2.2	KTS-R-10	JKS-10	JJS-10	FNQ-R-10	KTK-R-10	LP-CC-10
3	KTS-R-15	JKS-15	JJS-15	FNQ-R-15	KTK-R-15	LP-CC-15
4	KTS-R-20	JKS-20	JJS-20	FNQ-R-20	KTK-R-20	LP-CC-20
5.5	KTS-R-25	JKS-25	JJS-25	FNQ-R-25	KTK-R-25	LP-CC-25
7,5	KTS-R-30	JKS-30	JJS-30	FNQ-R-30	KTK-R-30	LP-CC-30
11	KTS-R-40	JKS-40	JJS-40	-	-	-
15	KTS-R-50	JKS-50	JJS-50	-	-	-
18	KTS-R-60	JKS-60	JJS-60	-	-	-
22	KTS-R-80	JKS-80	JJS-80	-	-	-
30	KTS-R-100	JKS-100	JJS-100	-	-	-
37	KTS-R-125	JKS-125	JJS-125	-	-	-
45	KTS-R-150	JKS-150	JJS-150	-	-	-
55	KTS-R-200	JKS-200	JJS-200	-	-	-
75	KTS-R-250	JKS-250	JJS-250	-	-	-

Tableau 9.10 380-500 V, protections de types A, B et C

¹⁾ Les fusibles KTS de Bussmann peuvent remplacer les fusibles KTN pour les variateurs de fréquence de 240 V.

²⁾ Les fusibles FWH de Bussmann peuvent remplacer les fusibles FWX pour les variateurs de fréquence de 240 V.

³⁾ Les fusibles A6KR de FERRAZ SHAWMUT peuvent remplacer les fusibles A2KR pour les variateurs de fréquence de 240 V.

	Taille de fusible max. recommandée						
Puissance [kW]	SIBA Type RK1	Littel fuse Type RK1	Ferraz- Shawmut Type CC	Ferraz- Shawmut Type RK1			
0,37-1.1	5017906-006	KLS-R-6	ATM-R-6	A6K-6-R			
1.5-2.2	5017906-010	KLS-R-10	ATM-R-10	A6K-10-R			
3	5017906-016	KLS-R-15	ATM-R-15	A6K-15-R			
4	5017906-020	KLS-R-20	ATM-R-20	A6K-20-R			
5.5	5017906-025	KLS-R-25	ATM-R-25	A6K-25-R			
7,5	5012406-032	KLS-R-30	ATM-R-30	A6K-30-R			
11	5014006-040	KLS-R-40	-	A6K-40-R			
15	5014006-050	KLS-R-50	-	A6K-50-R			
18	5014006-063	KLS-R-60	-	A6K-60-R			
22	2028220-100	KLS-R-80	-	A6K-80-R			
30	2028220-125	KLS-R-100	-	A6K-100-R			
37	2028220-125	KLS-R-125	-	A6K-125-R			
45	2028220-160	KLS-R-150	-	A6K-150-R			
55	2028220-200	KLS-R-200	-	A6K-200-R			
75	2028220-250	KLS-R-250	-	A6K-250-R			

Tableau 9.11 380-500 V, protections de types A, B et C

	Taille de fusible max. recommandée						
Puissance [kW]	Bussmann JFHR2	Ferraz- Shawmut J	Ferraz- Shawmut JFHR2 ¹⁾	Littel fuse JFHR2			
0,37-1.1	FWH-6	HSJ-6	-	-			
1.5-2.2	FWH-10	HSJ-10	-	-			
3	FWH-15	HSJ-15	-	-			
4	FWH-20	HSJ-20	-	-			
5.5	FWH-25	HSJ-25	-	-			
7,5	FWH-30	HSJ-30	-	-			
11	FWH-40	HSJ-40	-	-			
15	FWH-50	HSJ-50	-	-			
18	FWH-60	HSJ-60	-	-			
22	FWH-80	HSJ-80	-	-			
30	FWH-100	HSJ-100	-	-			
37	FWH-125	HSJ-125	-	-			
45	FWH-150	HSJ-150	-	-			
55	FWH-200	HSJ-200	A50-P-225	L50-S-225			
75	FWH-250	HSJ-250	A50-P-250	L50-S-250			

Tableau 9.12 380-500 V, protections de types A, B et C

¹⁾ Les fusibles A50QS de Ferraz-Shawmut peuvent remplacer les fusibles A50P.

	Taille de fusible max. recommandée					
Puissance	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
[kW]	Type RK1	Type J	Type T	Type CC	Type CC	Type CC
0.75-1.1	KTS-R-5	JKS-5	JJS-6	FNQ-R-5	KTK-R-5	LP-CC-5
1.5-2.2	KTS-R-10	JKS-10	JJS-10	FNQ-R-10	KTK-R-10	LP-CC-10
3	KTS-R15	JKS-15	JJS-15	FNQ-R-15	KTK-R-15	LP-CC-15
4	KTS-R20	JKS-20	JJS-20	FNQ-R-20	KTK-R-20	LP-CC-20
5,5	KTS-R-25	JKS-25	JJS-25	FNQ-R-25	KTK-R-25	LP-CC-25
7,5	KTS-R-30	JKS-30	JJS-30	FNQ-R-30	KTK-R-30	LP-CC-30
11	KTS-R-35	JKS-35	JJS-35	-	-	-
15	KTS-R-45	JKS-45	JJS-45	-	-	-
18	KTS-R-50	JKS-50	JJS-50	-	-	-
22	KTS-R-60	JKS-60	JJS-60	-	-	-
30	KTS-R-80	JKS-80	JJS-80	-	-	-
37	KTS-R-100	JKS-100	JJS-100	-	-	-
45	KTS-R-125	JKS-125	JJS-125	-	-	-
55	KTS-R-150	JKS-150	JJS-150	-	-	-
75	KTS-R-175	JKS-175	JJS-175	-	-	-

Tableau 9.13 525-600 V, types de protection A, B et C

	Tai	dée		
Puissance [kW]	SIBA Type RK1	Littel fuse Type RK1	Ferraz- Shawmut Type RK1	Ferraz- Shawmut J
0.75-1.1	5017906-005	KLS-R-005	A6K-5-R	HSJ-6
1.5-2.2	5017906-010	KLS-R-010	A6K-10-R	HSJ-10
3	5017906-016	KLS-R-015	A6K-15-R	HSJ-15
4	5017906-020	KLS-R-020	A6K-20-R	HSJ-20
5,5	5017906-025	KLS-R-025	A6K-25-R	HSJ-25
7,5	5017906-030	KLS-R-030	A6K-30-R	HSJ-30
11	5014006-040	KLS-R-035	A6K-35-R	HSJ-35
15	5014006-050	KLS-R-045	A6K-45-R	HSJ-45
18	5014006-050	KLS-R-050	A6K-50-R	HSJ-50
22	5014006-063	KLS-R-060	A6K-60-R	HSJ-60
30	5014006-080	KLS-R-075	A6K-80-R	HSJ-80
37	5014006-100	KLS-R-100	A6K-100-R	HSJ-100
45	2028220-125	KLS-R-125	A6K-125-R	HSJ-125
55	2028220-150	KLS-R-150	A6K-150-R	HSJ-150
75	2028220-200	KLS-R-175	A6K-175-R	HSJ-175

Tableau 9.14 525-600 V, types de protection A, B et C

Puissance	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
[kW]	Type RK1	Type J	Type T	Type CC	Type CC	Type CC
1,1	KTS-R-5	JKS-5	JJS-6	FNQ-R-5	KTK-R-5	LP-CC-5
1.5-2.2	KTS-R-10	JKS-10	JJS-10	FNQ-R-10	KTK-R-10	LP-CC-10
3	KTS-R15	JKS-15	JJS-15	FNQ-R-15	KTK-R-15	LP-CC-15
4	KTS-R20	JKS-20	JJS-20	FNQ-R-20	KTK-R-20	LP-CC-20
5,5	KTS-R-25	JKS-25	JJS-25	FNQ-R-25	KTK-R-25	LP-CC-25
7,5	KTS-R-30	JKS-30	JJS-30	FNQ-R-30	KTK-R-30	LP-CC-30
11	KTS-R-35	JKS-35	JJS-35	-	-	-
15	KTS-R-45	JKS-45	JJS-45	-	-	-
18	KTS-R-50	JKS-50	JJS-50	-	-	-
22	KTS-R-60	JKS-60	JJS-60	-	-	-
30	KTS-R-80	JKS-80	JJS-80	-	-	-
37	KTS-R-100	JKS-100	JJS-100	-	-	-
45	KTS-R-125	JKS-125	JJS-125	-	-	-
55	KTS-R-150	JKS-150	JJS-150	-	-	-
75	KTS-R-175	JKS-175	JJS-175	-	-	-

Tableau 9.15 525-690 V, protections de types A, B et C

	Taille de fusible max. recommandée							
Puissance [kW]	Fusible d'entrée max.	Bussmann E52273 RK1/JDDZ	Bussmann E4273 J/JDDZ	Bussmann E4273 T/JDDZ	SIBA E180276 RK1/JDDZ	LittelFuse E81895 RK1/JDDZ	Ferraz- Shawmut E163267/E2137 RK1/JDDZ	Ferraz- Shawmut E2137 J/HSJ
11	30 A	KTS-R-30	JKS-30	JKJS-30	5017906-030	KLS-R-030	A6K-30-R	HST-30
15-18,5	45 A	KTS-R-45	JKS-45	JJS-45	5014006-050	KLS-R-045	A6K-45-R	HST-45
22	60 A	KTS-R-60	JKS-60	JJS-60	5014006-063	KLS-R-060	A6K-60-R	HST-60
30	80 A	KTS-R-80	JKS-80	JJS-80	5014006-080	KLS-R-075	A6K-80-R	HST-80
37	90 A	KTS-R-90	JKS-90	JJS-90	5014006-100	KLS-R-090	A6K-90-R	HST-90
45	100 A	KTS-R-100	JKS-100	JJS-100	5014006-100	KLS-R-100	A6K-100-R	HST-100
55	125 A	KTS-R-125	JKS-125	JJS-125	2028220-125	KLS-150	A6K-125-R	HST-125
75	150 A	KTS-R-150	JKS-150	JJS-150	2028220-150	KLS-175	A6K-150-R	HST-150

Tableau 9.16 525-690 V, protections de types B et C

9.4 Raccordement du moteur

AAVERTISSEMENT

TENSION INDUITE

La tension induite des câbles moteur de sortie acheminés ensemble peut charger les condensateurs de l'équipement, même lorsque l'équipement est hors tension et verrouillé. Le fait de ne pas acheminer les câbles du moteur de sortie séparément ou de ne pas utiliser de câbles blindés peut entraîner le décès ou des blessures graves.

- acheminer séparément les câbles du moteur ou
- utiliser des câbles blindés

Raccordement du moteur

AVIS!

Pour se conformer aux prescriptions d'émissions CEM, l'utilisation de câbles blindés/armés est requise. Pour plus d'informations, voir le *chapitre 5.2.1 Résultats des essais CEM* et et l'*Illustration 3.3*.

Voir le *chapitre 6.2 Spécifications générales* pour obtenir le dimensionnement correct des sections et longueurs des câbles du moteur.

Borne	96	97	98	99	
n°					
	U	٧	W	PE ¹⁾	Tension moteur 0 à 100 % de la
					tension secteur.
					3 fils hors du moteur
	U1	V1	W1	PE ¹⁾	Raccordement en triangle
	W2	U2	V2	PE"	6 fils hors du moteur
	U1	V1	W1	PE ¹⁾	Raccordement en étoile U2, V2, W2
					U2, V2 et W2 à interconnecter
					séparément.

Tableau 9.17 Descriptions des bornes

¹⁾ Mise à la terre protégée

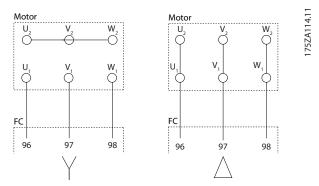


Illustration 9.29 Connexions en étoile et en triangle

AVIS!

Sur les moteurs sans papier d'isolation de phase ou autre renforcement d'isolation convenant à un fonctionnement avec alimentation de tension (par exemple un variateur de fréquence), placer un filtre sinus à la sortie du variateur de fréquence.

Blindage des câbles

Éviter les extrémités blindées torsadées (queues de cochon) car elles détériorent l'effet de blindage à des fréquences élevées. Si l'installation d'un isolateur ou d'un contacteur de moteur impose de rompre le blindage, ce dernier doit être poursuivi à l'impédance HF la plus faible possible.

AVIS!

Dénuder un morceau de câble du moteur pour exposer le blindage derrière l'étrier ET raccorder la mise à la terre à la borne 99.

Relier le blindage du câble moteur à la plaque de découplage à la terre du variateur de fréquence et au boîtier métallique du moteur.

Procéder aux raccordements du blindage avec la plus grande surface possible (étrier de serrage). Utiliser pour cela les dispositifs d'installation fournis dans le variateur de fréquence.

Si le montage d'un isolateur de moteur ou d'un relais moteur impose une découpe du blindage, le blindage doit être continué avec la plus faible impédance HF possible.

Longueur et section des câbles

Le variateur de fréquence a été testé avec un câble d'une longueur et d'une section données. En augmentant la section du câble, la capacitance et donc le courant de fuite peuvent augmenter d'où la nécessité de réduire la longueur du câble en conséquence. Raccourcir au maximum le câble moteur pour réduire le niveau sonore et les courants de fuite.

Fréquence de commutation

Lorsque des variateurs de fréquence sont utilisés avec des filtres sinus pour réduire le bruit acoustique d'un moteur, régler la fréquence de commutation conformément aux instructions du filtre sinus au par. 14-01 Fréq. commut.

- 1. Fixer la plaque de découplage à la terre à la base du variateur de fréquence avec les vis et les rondelles du sac d'accessoires.
- 2. Fixer le câble du moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Raccorder à la mise à la terre (borne 99) sur la plaque de découplage à l'aide des vis fournies dans le sac d'accessoires.

- 4. Insérer les connecteurs embrochables 96 (U), 97 (V), 98 (W) (jusqu'à 7,5 kW) et le câble du moteur dans les bornes étiquetées MOTEUR.
- 5. Fixer le câble blindé à la plaque de découplage à la terre à l'aide des vis et des rondelles fournies dans le sac d'accessoires.

Le variateur de fréquence permet d'utiliser tous les types de moteurs asynchrones triphasés standard. Les moteurs de petite taille sont généralement montés en étoile (230/400 V, Y). Les moteurs de grande taille sont normalement montés en triangle (400/690 V, Δ). Se référer à la plaque signalétique du moteur pour le mode de raccordement et la tension corrects.

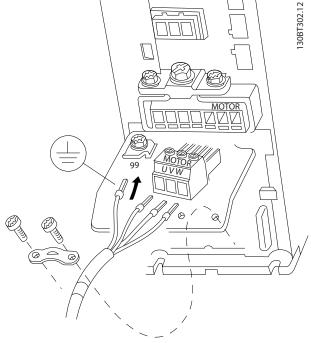


Illustration 9.30 Raccordement du moteur pour les protections A1, A2 et A3

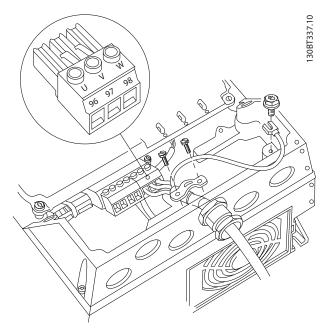


Illustration 9.31 Raccordement du moteur pour protections A4/A5

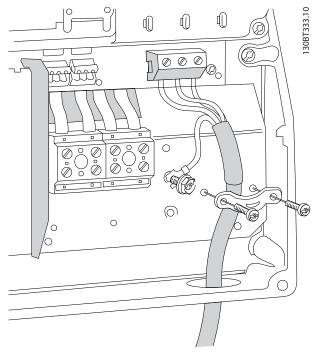


Illustration 9.32 Raccordement du moteur pour protections B1 et B2

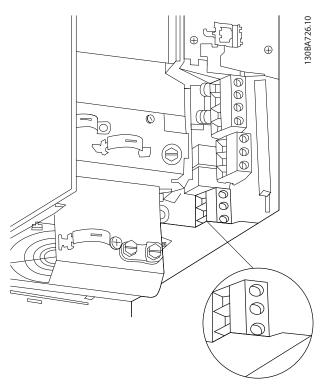


Illustration 9.33 Raccordement du moteur pour protection B3

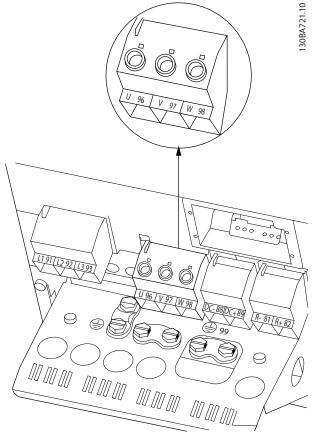


Illustration 9.34 Raccordement du moteur pour protection B4

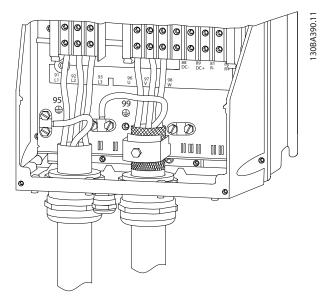


Illustration 9.35 Raccordement du moteur pour protections C1 et C2 (IP21/NEMA Type 1 et IP55/66/NEMA Type 12)

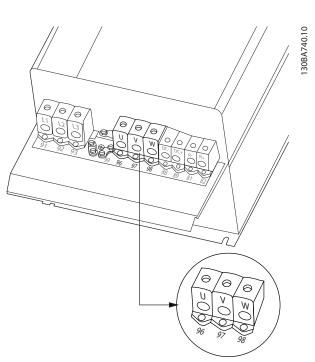


Illustration 9.36 Raccordement du moteur pour protections C3 et C4

9.5 Protection du courant de fuite à la terre

Suivre les réglementations locales et nationales concernant la mise à la terre de protection de l'équipement en cas de courant de fuite > 3,5 mA.

Le raccordement de protection par mise à la terre doit présenter une section minimale de 10 mm² ou 2 fils séparés avec chacun la même section que les fils de phase. La technologie du variateur de fréquence implique une commutation de fréquence élevée à des puissances importantes. Cela génère un courant de fuite dans la mise à la terre.

Le courant de fuite à la terre provient de plusieurs sources et dépend des différentes configurations du système dont le filtrage RFI, une longueur de câble moteur, les câbles moteur blindés et la puissance du variateur de fréquence.

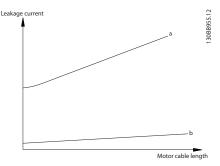


Illustration 9.37 Influence de la longueur de câble moteur et de la puissance sur le courant de fuite. Puissance a > Puissance b

Le courant de fuite dépend également de la distorsion de la ligne.

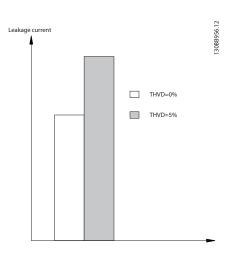


Illustration 9.38 Influence de la distorsion de la ligne sur le courant de fuite

La norme EN/CEI 61800-5-1 (norme produit concernant les systèmes d'entraînement électriques) exige une attention particulière si le courant de fuite dépasse 3,5 mA. La mise à la terre doit être renforcée de l'une des façons suivantes :

- Fil de terre (borne 95) d'au moins 10 mm²
- Deux fils de terre séparés respectant les consignes de dimensionnement

Voir les normes EN/CEI 61800-5-1 et EN 50178 pour plus d'informations.

Utilisation de RCD

Lorsque des relais de protection différentielle (RCD), aussi appelés disjoncteurs de mise à la terre (ELCB), sont utilisés, respecter les éléments suivants :

- Utiliser des RCD de type B uniquement car ils sont capables de détecter les courants CA et CC.
- Utiliser des RCD avec un retard pour éviter les pannes dues aux courants à la terre transitoires.
- Dimensionner les RCD selon la configuration du système et en tenant compte de l'environnement d'installation.

Le courant de fuite comprend plusieurs fréquences provenant de la fréquence secteur et de la fréquence de commutation. La détection de la fréquence de commutation dépend du type de RCD utilisé.

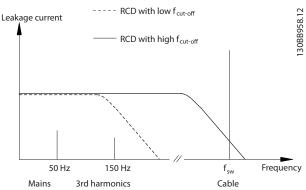


Illustration 9.39 Sources principales du courant de fuite

La quantité de courant de fuite détectée par les RCD dépend de la fréquence de coupure des RCD.

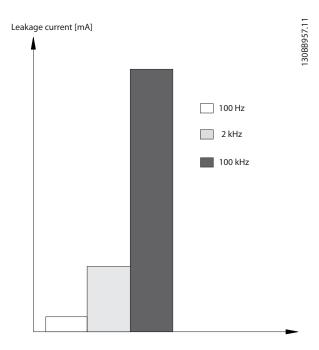


Illustration 9.40 Influence de la fréquence de coupure du RCD sur la réponse/mesure

9.6 Raccordements supplémentaires

9.6.1 Relais

Relais 1

• Borne 01 : commune

• Borne 02 : normalement ouverte 240 V

Borne 03 : normalement fermée 240 V

Relais 2 (Pas FC 301)

• Borne 04 : commune

Borne 05 : normalement ouverte 400 V

Borne 06 : normalement fermée 240 V

Les relais 1 et 2 sont programmés aux par. 5-40 Fonction relais, 5-41 Relais, retard ON et 5-42 Relais, retard OFF.

Sorties relais complémentaires grâce au module d'options de relais MCB 105.

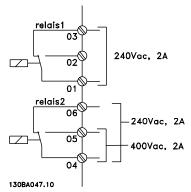


Illustration 9.41 Sorties de relais 1 et 2

Pour définir le relais de sortie, voir le groupe de paramètre 5-4* Relais.

No.	01-02	Établissement (normalement ouvert)
	01-03	Interruption (normalement fermé)
	04-05	Établissement (normalement ouvert)
	04-06	Interruption (normalement fermé)

Tableau 9.18 Description des relais

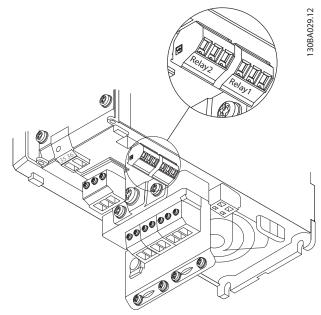


Illustration 9.42 Bornes de raccordement relais (Protections de types A1, A2 et A3).

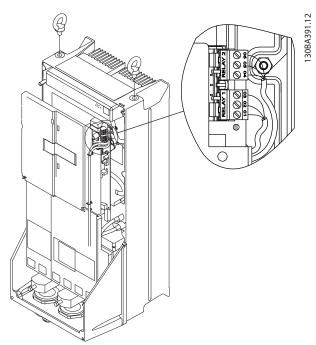


Illustration 9.43 Bornes de raccordement relais (Protections de types C1 et C2).

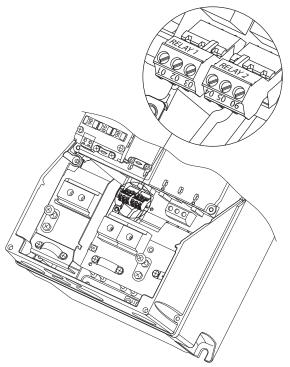
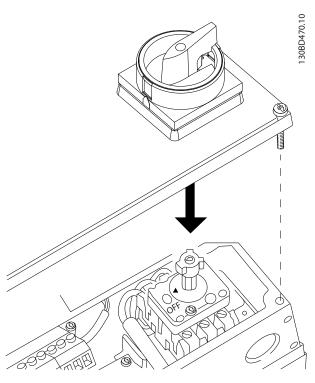
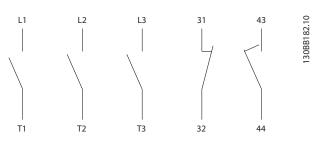


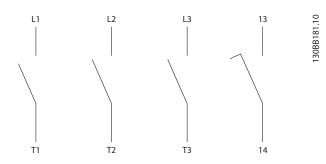
Illustration 9.44 Bornes de raccordement relais (Protections de types A5, B1 et B2).

9.6.2 Sectionneurs et contacteurs

Assemblage de la protection IP55/NEMA type 12 (protection de type A5) avec sectionneur secteur

L'interrupteur de secteur est placé sur le côté gauche des protections de types B1, B2, C1 et C2. Sur la protection A5, il se trouve à droite.


Illustration 9.45 Emplacement de l'interrupteur de secteur

Type de protection	Туре
A4/A5	Kraus&Naimer KG20A T303
B1	Kraus&Naimer KG64 T303
B2	Kraus&Naimer KG64 T303

Illustration 9.46 Connexions des bornes pour A4, A5, B1, B2

Type de protection	Туре
C1	Kraus&Naimer KG100 T303
C1	Kraus&Naimer KG105 T303
C2	Kraus&Naimer KG160 T303

Illustration 9.47 Connexions des bornes pour C1, C2

9.6.3 Répartition de la charge

La borne de bus CC est utilisée pour une alimentation CC de secours, le circuit intermédiaire étant fourni par une source externe. Elle utilise les bornes 88 et 89.

Le câble de raccordement doit être blindé et la longueur maximale entre le variateur de fréquence et la barre de courant continu est limitée à 25 m.

La répartition de la charge permet de relier le circuit intermédiaire de plusieurs variateurs de fréquence.

AATTENTION

Noter la présence de tensions allant jusqu'à 1 099 V CC sur les bornes.

La répartition de la charge nécessite un équipement supplémentaire et implique certaines précautions à prendre en matière de sécurité.

AATTENTION

Noter que la coupure du secteur peut ne pas isoler le variateur de fréquence en raison de la connexion du circuit intermédiaire.

9.6.4 Résistance de freinage

Le câble de raccordement à la résistance de freinage doit être blindé et la longueur maximale entre le variateur de fréquence et la barre de courant continu est limitée à 25 m.

- Relier le blindage à la plaque conductrice arrière du variateur de fréquence et à l'armoire métallique de la résistance de freinage à l'aide d'étriers de serrage.
- 2. Dimensionner la section du câble de la résistance de freinage en fonction du couple de freinage.

Les bornes 81 et 82 sont des bornes de résistance de freinage.

AVIS!

En cas de court-circuit dans le frein IGBT, empêcher la perte de puissance dans la résistance de freinage en utilisant un interrupteur de secteur ou un contacteur afin de déconnecter le variateur de fréquence du secteur. Seul le variateur de fréquence doit contrôler le contacteur.

AATTENTION

Noter que des tensions pouvant atteindre 1 099 V CC peuvent se produire aux bornes, selon la tension d'alimentation.

9.6.5 Logiciel PC

Le PC est connecté via un câble USB standard (hôte/dispositif) ou via l'interface RS-485.

L'USB est un bus série utilisant 4 fils blindés dont la broche 4 (terre) est reliée au blindage du port USB du PC. Avec la connexion d'un PC à un variateur de fréquence via le câble USB, il existe un risque d'endommagement du contrôleur hôte USB du PC. Tous les PC standard sont fabriqués sans isolation galvanique au niveau du port USB.

Toute différence de potentiel à la terre liée au non-respect des recommandations décrites dans le *Manuel d'utilisation* (*Raccordement au secteur CA*) peut endommager le contrôleur hôte USB via le blindage du câble USB.

Il est conseillé d'utiliser un isolateur USB avec isolation galvanique pour protéger le contrôleur hôte USB du PC contre les différences de potentiel à la terre lors de la connexion du PC à un variateur de fréquence via un câble USB.

Il est déconseillé d'utiliser un câble de puissance PC avec une fiche de terre lorsque le PC est connecté au variateur de fréquence via un câble USB. En effet, il réduit la différence de potentiel à la terre, mais ne supprime pas toutes les différences liées à la connexion de la terre et du blindage au port USB du PC.

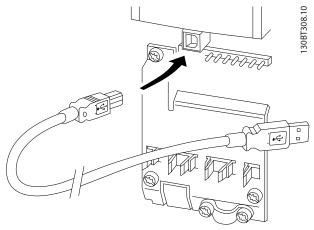


Illustration 9.48 Connexion USB

9.6.5.1 MCT 10

Pour contrôler le variateur de fréquence à partir d'un PC, installer le Logiciel de programmation MCT 10.

Stockage des données dans le PC via le Logiciel de programmation MCT 10

- Connecter un PC à l'unité via le port de communication USB.
- 2. Ouvrir le Logiciel de programmation MCT 10.
- 3. Sélectionner le port USB dans la section Réseau.
- 4. Sélectionner Copier.
- 5. Sélectionner la section Projet.
- 6. Sélectionner Coller.
- 7. Sélectionner Enregistrer sous.

Tous les paramètres sont maintenant stockés.

Transfert de données du PC vers le variateur de fréquence via le Logiciel de programmation MCT 10

- 1. Connecter un PC à l'unité via le port de communication USB.
- 2. Ouvrir le Logiciel de programmation MCT 10.
- 3. Sélectionner *Ouvrir* les fichiers archivés s'affichent.
- 4. Ouvrir le fichier approprié.
- 5. Choisir Écrire au variateur.

Tous les paramètres sont maintenant transférés vers le variateur de fréquence.

Un manuel distinct pour le Logiciel de programmation MCT 10 est disponible. Le télécharger à partir de www.danfoss.com/BusinessAreas/DrivesSolutions/Software-download/.

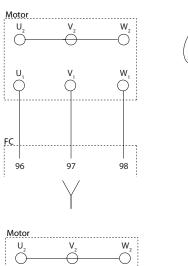
9.6.5.2 MCT 31

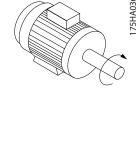
L'outil informatique de calcul des harmoniques MCT 31 simplifie l'estimation de la distorsion harmonique dans une application donnée. Il est possible de calculer la distorsion harmonique des variateurs de fréquence Danfoss ou d'une autre marque équipés de dispositifs de réduction des harmoniques supplémentaires, tels que des filtres AHF Danfoss et des redresseurs à 12-18 impulsions.

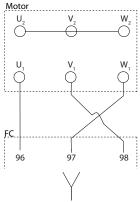
Le logiciel MCT 31 peut également être téléchargé à l'adresse www.danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/.

9.6.5.3 Logiciel de calcul des harmoniques (HCS)

HCS est une version avancée de l'outil de calcul d'harmoniques. Les résultats calculés sont comparés aux normes en vigueur et peuvent être imprimés ultérieurement.


Consulter le www.danfoss-hcs.com/Default.asp?LEVEL=START




9.7 Informations moteur supplémentaires

9.7.1 Câble moteur

Le variateur de fréquence permet d'utiliser tous les types de moteurs asynchrones triphasés standard. Le réglage effectué en usine correspond à une rotation dans le sens horaire quand la sortie du variateur de fréquence est raccordée comme suit :

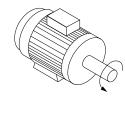


Illustration 9.49 Connexions des bornes pour une rotation dans le sens horaire et dans le sens antihoraire

Le sens de rotation peut être modifié en inversant deux phases dans le câble du moteur ou en changeant le réglage du par. *4-10 Direction vit. moteur*.

Le contrôle de la rotation du moteur peut être effectué à l'aide du par. *1-28 Ctrl rotation moteur* et en suivant les étapes indiquées sur l'affichage.

9.7.2 Raccordement de plusieurs moteurs

AVIS!

Des problèmes peuvent survenir au démarrage et à vitesse réduite, si les dimensions des moteurs sont très différentes, parce que la résistance ohmique relativement grande dans le stator des petits moteurs entraîne une tension supérieure au démarrage et à vitesse réduite.

Le variateur de fréquence peut commander plusieurs moteurs montés en parallèle. Il convient de noter les points suivants en cas d'utilisation d'un raccordement en parallèle des moteurs :

- Le mode VCC^{plus} peut être utilisé dans certaines applications.
- La valeur du courant total consommé par les moteurs ne doit pas dépasser la valeur du courant de sortie nominal I_{INV} du variateur de fréquence.
- Ne pas utiliser de raccord commun des joints pour les câbles longs (voir l'*Illustration 9.51*).
- La longueur totale de câble du moteur spécifiée dans le *Tableau 5.2* est valable tant que les câbles parallèles restent courts (moins de 10 m chacun) (voir les *Illustration 9.53* et *Illustration 9.54*).
- Tenir compte de la chute de tension dans les câbles du moteur (voir l'*Illustration 9.54*).
- Pour les longs câbles parallèles, utiliser un filtre LC (voir l'Illustration 9.54).
- Pour les longs câbles sans raccordement parallèle, voir l'Illustration 9.55.

AVIS!

Quand les moteurs sont connectés en parallèle, le par. 1-02 Source codeur arbre moteur ne peut pas être utilisé et le par. 1-01 Principe Contrôle Moteur doit être réglé sur [0] U/f.

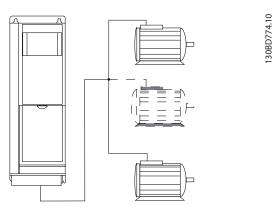


Illustration 9.50 Raccord commun des joints pour câbles courts

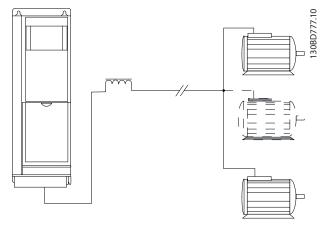


Illustration 9.53 Câbles parallèles avec charge

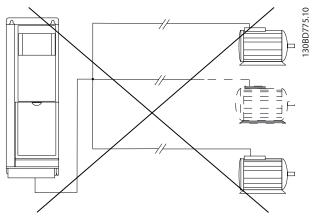


Illustration 9.51 Raccord commun des joints pour câbles longs

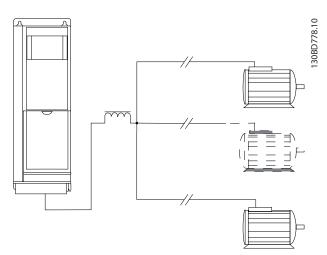


Illustration 9.54 Filtre LC pour longs câbles parallèles

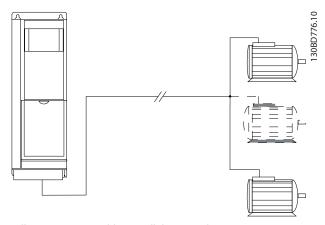


Illustration 9.52 Câbles parallèles sans charge

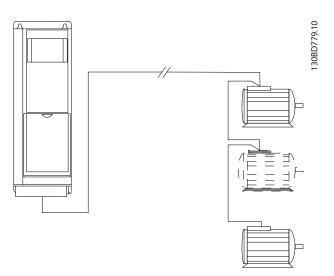


Illustration 9.55 Longs câbles des connexions en série

Types de protection	Puissance [kW]	Tension [V]	1 câble [m]	2 câbles [m]	3 câbles [m]	4 câbles [m]
A1 A2 A4 A5	0.37-0.75	400	150	45	8	6
A1, A2, A4, A5	0.37-0.75	500	150	7	4	3
A2, A4, A5	1.1-1.5	400	150	45	20	8
		500	150	45	5	4
A2, A4, A5	2,2-4	400	150	45	20	11
		500	150	45	20	6
A2 A4 A5	5.5-7.5	400	150	45	20	11
A3, A4, A5	3.5-7.5	500	150	45	20	11
B1, B2, B3, B4,	11.75	400	150	75	50	37
C1, C2, C3, C4	11-75	500	150	75	50	37
A3	1.1-7.5	525-690	100	50	33	25
B4	11-30	525-690	150	75	50	37
C3	37-45	525-690	150	75	50	37

Tableau 9.19 Longueur de câble max. pour chaque câble parallèle

9.8 Sécurité

9.8.1 Essai de haute tension

Effectuer un essai de haute tension en court-circuitant les bornes U, V, W, L₁, L₂ et L₃. Alimenter les variateurs de fréquence 380-500 V avec un courant continu de 2,15 kV maximum et les variateurs de fréquence 525-690 V avec un courant continu de 2,525 kV pendant une seconde entre ce court-circuit et le châssis.

AAVERTISSEMENT

En cas d'essai de haute tension de toute l'installation, interrompre les raccordements secteur et moteur si les courants de fuite sont trop élevés.

9.8.2 Mise à la terre CEM

Mise à la terre CEM correcte

- Respecter les normes de sécurité pour la mise à la terre.
- Plus le raccordement à la terre est court, meilleure est la performance CEM.
- Les fils les plus carrés présentent une impédance inférieure et une meilleure mise à la terre CEM.
- Lorsque plusieurs dispositifs avec des armoires métalliques sont utilisés, il convient de les installer sur une plaque métallique de montage pour améliorer la performance CEM.

AVIS!

Si nécessaire, utiliser des rondelles pour serrer les boulons, en présence de parties peintes par exemple.

AATTENTION

DANGER POTENTIEL EN CAS DE PANNE INTERNE Risque de blessure si le variateur de fréquence n'est pas fermé correctement.

 Avant d'appliquer de la puissance, s'assurer que tous les caches de sécurité sont en place et fermement fixés.

9.8.3 Installation selon les critères ADN

Les unités présentant une protection nominale contre les infiltrations IP55 (NEMA 12) ou supérieure empêchent la formation d'étincelles et sont classées dans la catégorie des appareils électriques limitant le risque d'explosion conformément à l'Accord européen relatif au transport international des marchandises dangereuses par voie de navigation intérieure (ADN).

Pour les unités présentant une protection nominale IP20, IP21 ou IP54, il convient de protéger le risque de formation d'étincelles comme suit :

- Ne pas installer d'interrupteur de secteur
- Vérifier que le par. 14-50 Filtre RFI est réglé sur [1] Actif
- Retirer toutes les fiches relais marquées RELAY.
 Voir l'Illustration 9.56.
- Vérifier quelles options relais sont installées le cas échéant. La seule option relais autorisée est la carte relais étendue MCB 113.

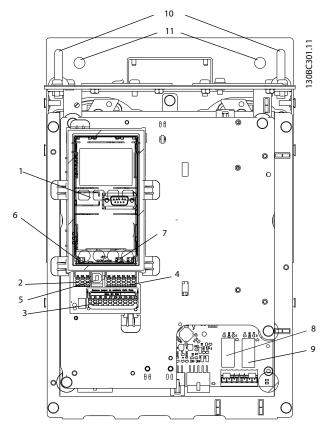


Illustration 9.56 Emplacement des fiches relais, pos. 8 et 9

La déclaration du fabricant est disponible sur demande.

10 Exemples d'applications

10.1 Applications couramment utilisées

Les exemples de cette partie servent de référence rapide pour les applications courantes.

- Les réglages des paramètres correspondent aux valeurs régionales par défaut sauf indication contraire (sélection au par. 0-03 Réglages régionaux).
- Les paramètres associés aux bornes et leurs réglages sont indiqués à côté des dessins.
- Lorsque le réglage des commutateurs des bornes analogiques A53 ou A54 est nécessaire, ceux-ci sont aussi représentés.

ATTENTION

Les thermistances doivent présenter une isolation renforcée ou double pour satisfaire aux exigences d'isolation PELV.

		Paramètres		
FC		.10	Fonction	Réglage
+24 V	120	30BB929.10	1-29 Adaptation	[1] AMA
+24 V	130	30BE	auto. au moteur	activée
DIN	180	_	(AMA)	compl.
DIN	190		5-12 E.digit.born.	[2]* Lâchage
сом	200		27	
DIN	270	J	* = valeur par dé	faut
DIN	290		Remarques/comn	nentaires : le
DIN	320		groupe de param	
DIN	330			
DIN	370		Données moteur d	-
			en fonction du m	oteur.
+10 V	500			
A IN	530			
A IN	540			
сом	550			
A OUT	420			
сом	390			
	7			
			l	

Tableau 10.1 AMA avec borne 27 connectée

			Paramètres	
FC		Ç	Fonction	Réglage
+24 V	120	01.0000000	1-29 Adaptation	[1] AMA
+24 V	130	900	auto. au moteur	activée
D IN	180	•	(AMA)	compl.
DIN	190		5-12 E.digit.born.	[0] Inactif
СОМ	200		27	
DIN	270		* = valeur par dé	faut
DIN	290		Remarques/comm	nentaires : le
DIN	320		groupe de param	
DIN	330		Données moteur o	
DIN	370		en fonction du m	•
			en fonction du m	oteui.
+10 V	500			
A IN	530			
A IN	540			
сом	550			
A OUT	420			
сом	390			
\				
	7			

Tableau 10.2 AMA sans borne 27 connectée

			Parame	etres
FC	$\overline{}$	10	Fonction	Réglage
+24 V	120	30BB926.10	6-10 Ech.min.U/	0.07 V*
+24 V	130	30BB	born.53	
DIN	180		6-11 Ech.max.U/	10 V*
DIN	190		born.53	
СОМ	200		6-14 Val.ret./	0 RPM
DIN	270		Réf.bas.born.53	
DIN	290		6-15 Val.ret./	1,500 RPM
DIN	320		Réf.haut.born.53	
DIN	330		* = valeur par dé	faut
DIN	370		Remarques/comm	
+10 V	5 0 ¢			
A IN	530	+		
A IN	540			
СОМ	550			
A OUT	420	-10 - +10V		
COM	390	10 1100		
U-I				
A53				

Tableau 10.3 Référence de vitesse analogique (tension)

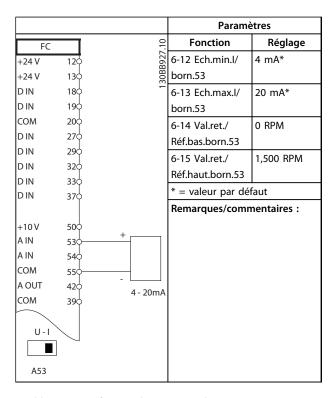


Tableau 10.4 Référence de vitesse analogique (courant)

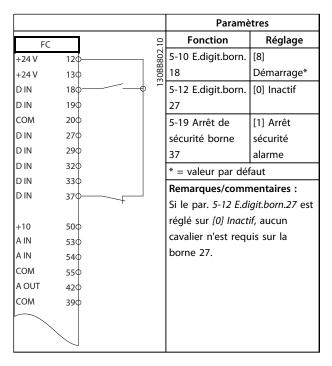


Tableau 10.5 Ordre de démarrage/arrêt avec Absence sûre du couple

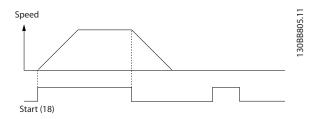


Illustration 10.1 Démarrage/Arrêt avec Absence sûre du couple

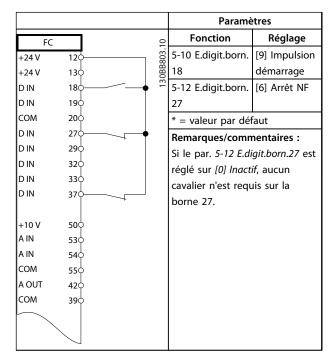


Tableau 10.6 Marche/arrêt par impulsion

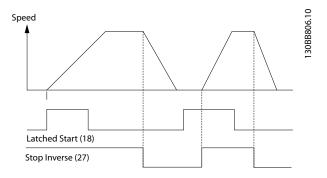


Illustration 10.2 Démarrage par impulsion/arrêt

Danfoss

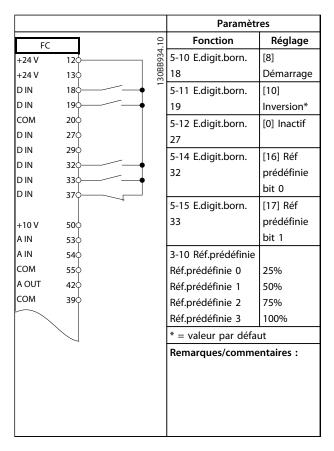


Tableau 10.7 Démarrage/arrêt avec inversion et 4 vitesses prédéfinies

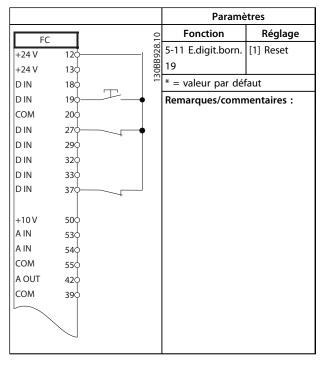


Tableau 10.8 Réinitialisation d'alarme externe

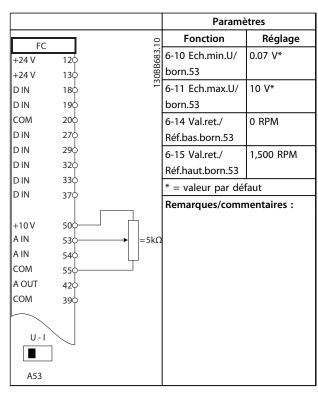


Tableau 10.9 Référence de vitesse (à l'aide d'un potentiomètre manuel)

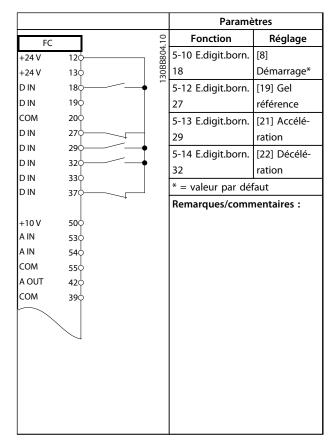


Tableau 10.10 Accélération/décélération

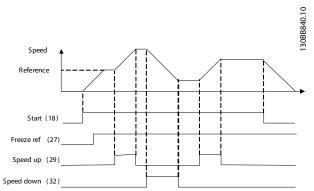


Illustration 10.3 Accélération/décélération

			Paramètres	
FC		10	Fonction	Réglage
+24 V	120	130BB685.10	8-30 Protocole	FC*
+24 V	130	0BB	8-31 Adresse	1*
DIN	180	13	8-32 Vit.	9,600*
DIN	190		transmission	
СОМ	200		* = valeur par déf	faut
DIN	270		Remarques/comn	
DIN	290		Sélectionner le pr	
DIN	320		l'adresse et la vite	
DIN	330		transmission dans	
DIN	370		paramètres menti	
			dessus.	office ci
+10 V	500		dessus.	
A IN	530			
A IN	540			
COM	550			
A OUT	420			
COM	390			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	010 020 030			
R2	050 060	RS-485		

Tableau 10.11 Raccordement du réseau RS-485

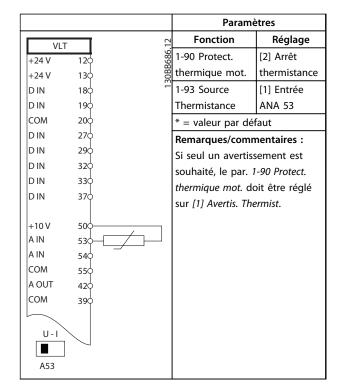


Tableau 10.12 Thermistance moteur

Paramètres

FC		.10	Fonction	Réglage
+24 V	120	30BB839.10	4-30 Fonction	[1] Avertis-
+24 V	130	30BE	perte signal de	sement
DIN	180	=======================================	retour moteur	
DIN	190		4-31 Erreur	100 tr/min
сом	200		vitesse signal de	
D IN	270		retour moteur	
D IN	290		4-32 Fonction	5 s
D IN	320		tempo. signal de	
D IN	330		retour moteur	
DIN	370		7-00 PID	[2] MCB 102
			vit.source ret.	[2] INICD 102
+10 V	500		17-11 Résolution	1024*
A IN A IN	530		(PPR)	1024
COM	54¢ 55¢		13-00 Mode	[1] Actif
A OUT	420			[1] ACtii
СОМ	390		contr. log avancé	
				[10] A
I	010		13-01 Événemen	[19] Avertis-
	020		t de démarrage	sement
	03♦		13-02 Événemen	[44] Touche
			t d'arrêt	Reset
	040		13-10 Opérande	[21] N°
2 /-	050		comparateur	avertiss.
	060		13-11 Opérateur	[1] ≈*
			comparateur	
			13-12 Valeur	90
			comparateur	
			13-51 Événemen	[22]
			t contr. log	Comparateur
			avancé	0
			13-52 Action	[32] Déf. sort.
			contr. logique	dig. A bas
			avancé	
			5-40 Fonction	[80] Sortie
			relais	digitale A
			* = valeur par dét	faut
			Remarques/comn	nentaires :
			Si la limite dans la	a surveillance
			du signal de reto	ur est
			dépassée, l'avertis	sement 90
			apparaît. Le SLC s	urveille l'aver-
			tissement 90 et si	
			l'avertissement 90	devient TRUE
			(VRAI), le relais 1	est déclenché.
			L'équipement ext	erne peut
			indiquer qu'il faut	procéder à
			l'entretien. Si l'err	eur de signal
			de retour redesce	nd sous la
			limite en moins d	e 5 s, le
			variateur de fréqu	ence continue
			à fonctionner et l	avertissement
			disparaît. Néanmo	oins, le relais 1
			reste enclenché ta	ant que la
			touche [Reset] su	r le LCP n'a
			pas été enfoncée.	

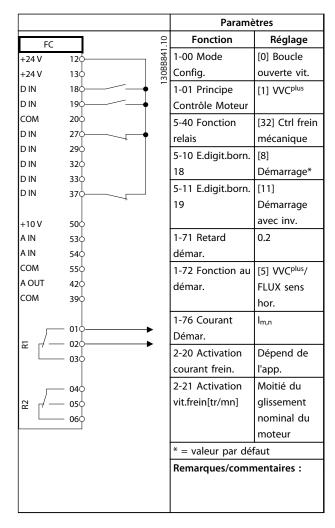


Tableau 10.14 Commande de frein mécanique (boucle ouverte)

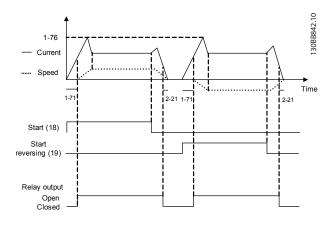


Illustration 10.4 Commande de frein mécanique (boucle ouverte)

Tableau 10.13 Utilisation du SLC pour régler un relais

10.1.1 Système de variateur en boucle fermée

Un système de variateur de fréquence comprend en général différents éléments tels que :

- Moteur
- Boîte de vitesses
- Frein mécanique
- Variateur de fréquence
- Codeur comme système de retour
- Résistance de freinage pour un freinage dynamique
- Transmission
- Charge

Les applications exigeant une commande de frein mécanique requièrent normalement une résistance de freinage.

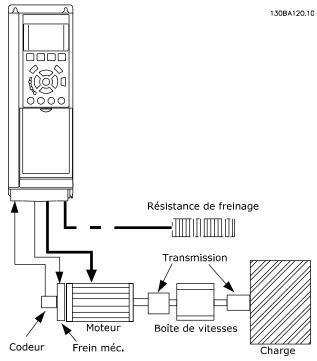
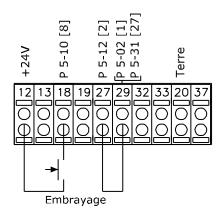


Illustration 10.5 Exemple de FC 302 Régulateur PID en boucle fermée

10.1.2 Programmation de la limite de couple et d'arrêt

Dans les applications avec un frein électromécanique externe, comme les applications de levage, il est possible d'arrêter le variateur de fréquence via un ordre d'arrêt standard et d'activer simultanément le frein électromécanique externe.

L'exemple de raccordement montre comment programmer le variateur de fréquence.


Le frein externe peut être relié au relais 1 ou 2. Programmer la borne 27 sur [2] Lâchage ou [3] Roue libre NF et la borne 29 sur [1] Mode born. 29, Sortie et [27] Limite couple & arrêt.

Description

Lorsqu'un ordre d'arrêt est actif via la borne 18 et que le variateur de fréquence n'est pas en limite de couple, le moteur suit la rampe de décélération jusqu'à 0 Hz. Si le variateur de fréquence est en limite de couple et qu'un ordre d'arrêt est activé, la borne 29 Sortie (programmée sur [27] Limite couple & arrêt) est activée. Le signal envoyé à la borne 27 passe de '1 logique' à '0 logique' et le moteur commence à passer en roue libre, garantissant ainsi que l'opération de levage s'arrête, même si le variateur lui-même ne peut pas gérer le couple requis (à cause d'une surcharge excessive).

- Démarrage/arrêt avec la borne 18 5-10 E.diqit.born.18, [8] Démarrage
- Arrêt rapide avec la borne 27
 5-12 E.digit.born.27, [2] Arrêt en roue libre (Contact NF)
- Borne 29 Sortie
 5-02 Mode born.29 Borne 29 Mode sortie [1]
 5-31 S.digit.born.29Limite de couple et arrêt [27]
- Sortie de relais (Relais 1)
 5-40 Fonction relais, [32] Commande de frein mécanique

Danfoss

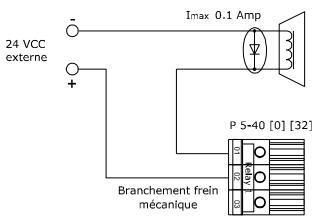


Illustration 10.6 Frein électromécanique externe

10.1.3 Programmation de la commande de vitesse

La vitesse requise du moteur est réglée via un potentiomètre raccordé à la borne 53. La plage de vitesse est comprise entre 0 et 1 500 tr/min correspondant à 0-10 V sur le potentiomètre. Le démarrage et l'arrêt sont commandés par un commutateur raccordé à la borne 18. Le régulateur PID de vitesse surveille le régime effectif du moteur à l'aide d'un codeur incrémental 24 V (HTL) comme signal de retour. Le capteur du signal de retour est un codeur (1 024 impulsions par tour) raccordé aux bornes 32 et 33.

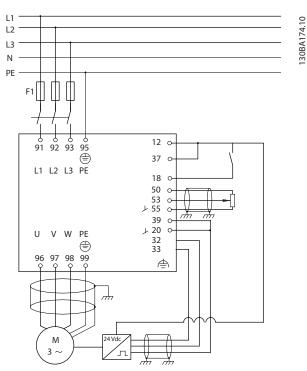


Illustration 10.7 Exemple - Connexions de la commande de vitesse

Exemple d'application

		Paramè	etres
	9	Fonction	Réglage
FC +24 V	12¢ 88888 13¢ 87	7-00 PID	[2] MCB 102
+24 V +24 V	130	vit.source ret.	[2]
DIN	180	17-11 Résolution	1024*
DIN	190	(PPR)	1021
сом	200	13-00 Mode	[1] Actif
DIN	270	contr. log	[1] Actii
D IN	290	avancé	
DIN	320	13-01 Événemen	[19] Avertis-
DIN	330	t de démarrage	sement
DIN	370	13-02 Événemen	[44] Touche
		t d'arrêt	Reset
+10 V A IN	500	13-10 Opérande	[21] N°
A IN	53¢ 54¢		avertiss.
COM	550	comparateur	
A OUT	420	13-11 Opérateur	[1] ≈*
сом	390	comparateur	00
		13-12 Valeur	90
<u> </u>	010	comparateur	[22]
≂ // —	020	13-51 Événemen	[22]
	03♦	t contr. log avancé	Comparateur 0
			_
	040	13-52 Action	[32] Déf. sort.
≅ / —	050	contr. logique	dig. A bas
	060	avancé	1001 6 11
		5-40 Fonction	[80] Sortie
		relais	digitale A
		* = valeur par dé	
		Remarques/comn	
		L'avertissement 9	
		lorsque le signal (
		l'encodeur ne cor	
		la référence. Le Si	
		l'avertissement 90	
		sement 90 devier	, ,,
		le relais 1 est déc	
		L'équipement ext	•
		alors indiquer qu'	
		procéder à l'entre	tien.

Tableau 10.15 Utilisation du SLC pour régler un relais

11 Options et accessoires

11.1 Options de communication

- VLT® PROFIBUS DP V1 MCA 101
- VLT[®] DeviceNet MCA 104
- VLT® CAN Open MCA 105
- VLT® EtherCAT MCA 124
- Convertisseur VLT® PROFIBUS MCA 114
- VLT[®] PROFINET MCA 120
- VLT[®] EtherNet/IP MCA 121
- VLT® Modbus TCP MCA 122
- VLT® POWERLINK MCA 122
- Convertisseur VLT® DeviceNet MCA 194

11.2 E/S, options de retour et de sécurité

11.2.1 Module d'option d'E/S à usage général MCB 101 VLT®

Le MCB 101 est utilisé pour l'extension d'entrées et de sorties digitales et analogiques des FC 301 et FC 302.

Installer MCB 101 dans l'emplacement B de l'VLT® AutomationDrive.

Contenu:

- Module d'option MCB 101
- Fixation étendue pour LCP
- Protection borniers

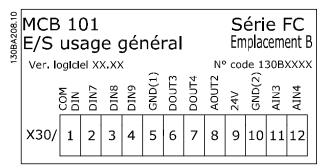


Illustration 11.1 Option MCB 101

11.2.1.1 Isolation galvanique dans le MCB

Les entrées digitales et analogiques sont isolées galvaniquement des autres entrées et sorties du MCB 101 et de la carte de commande du variateur de fréquence. Les sorties digitales et analogiques du MCB 101 sont isolées galvaniquement des autres entrées et sorties du MCB 101, mais pas de celles de la carte de commande du variateur de fréquence.

Si les entrées digitales 7, 8 ou 9 doivent être activées à l'aide d'une alimentation interne de 24 V (borne 9), la connexion entre les bornes 1 et 5, représentée sur l'Illustration 11.2, doit être effectuée.

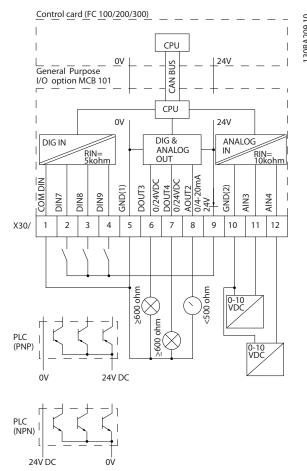


Illustration 11.2 Schéma de principe

N° de bome X30.2, X30.3, X30.4 Logique PNP Nou NNPN Niveau de tension 0-24 V CC Niveau de tension, « 0 » logique PNP (terre = 0 V) < 5 V CC Niveau de tension, « 1 » logique PNP (terre = 24 V) < 14 V CC Plage de tension, « 1 » logique NPN (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique NPN (terre = 24 V) > 19 V CC Tension maximale sur l'entrée 28 V continu Plage de frequence d'impulsion 0-110 kHz Cycle d'utilisation, durée d'impulsion min. 4,5 ms Impédance d'entrée 2 kN Entrée analogique - Borne X30/11, 12 Nombre d'entrées analogiques No de borne X30.11, X30.12 Modes Tension N'é de borne 10 bits (signe +) Précision des entrées analogiques Erreur max. 0,5 % de l'échelle totale Largeur de bande FC	Entrée digitale - Borne X30/1-4	
Logique PNP ou NPN Niveau de tension, « 0 » logique PNP (terre = 0 V) < 5 ∨ CC Niveau de tension, « 1 » logique PNP (terre = 0 V) < 5 ∨ CC Plage de tension, « 0 » logique NPN (terre = 24 V) < 14 ∨ CC Plage de tension, « 1 » logique NPN (terre = 24 V) < 19 ∨ CC Plage de tension, « 1 » logique NPN (terre = 24 V) > 19 ∨ CC Tension maximale sur l'entrée 28 ∨ Continu Plage de fréquence d'impulsion 0-110 kHz Cycle d'utilisation, durée d'impulsion 4,5 ms Impédance d'entrée 3 × 2 kO Entrée analogique - Borne X30/11, 12 3 × 2 kO Entrée analogique - Borne X30/11, 12 3 × 2 kO Modes 3 × 2 kO N' de borne 3 × 30.11, 33.01	Nombre d'entrées digitales	3
Niveau de tension 0 - 24 V CC Niveau de tension, « 0 » logique PNP (terre = 0 V) < 5 V CC Niveau de tension, « 0 » logique PNP (terre = 0 V) < 10 V CC Plage de tension, « 0 » logique NPN (terre = 24 V) < 14 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique NPN (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Plage de tension, « 1 » logique PNP (terre = 24 V) > 19 V CC Logique de tension, « 1 » logique PNP (terre = 24 V) > 20 V Continu Lirde de tension « Logique PNP (terre = 24 V) > 20 V Continu N' de borne X30.11, X30.12 N' de borne X30.11, X30.12 Sorties digitales entrées analogiques Erreur max. 0,5 % de l'échelle totale Précision de la sortie ension à la sortie digitale/en fréquence C2 X V Sorties digitales - Borne X30/6, 7 <th>N° de borne</th> <th>X30.2, X30.3, X30.4</th>	N° de borne	X30.2, X30.3, X30.4
Niveau de tension, « 0 » logique PNP (terre = 0 V) < 5 V CC	Logique	PNP ou NPN
Niveau de tension, « 1 » logique PNP (terre = 0 V) Plage de tension, « 0 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de tension, « 1 » logique NPN (terre = 24 V) Plage de fréquence d'impulsion Plage de fréquence d'impulsion Plage de fréquence d'impulsion min. Plage de fréquence d'impulsion min. Plage de fréquence d'impulsion min. Plage de brance X30/11, 12 Plage de brance X30/11, 12 Plage de brance X30/11, 12 Plage de brance d'entrée Plage de brance X30/11, 12 Plage de brance d'entrée X30.11, X30.12 Plage de tension Plage de brance d'entrée X30.11, X30.12 Plage de tension Plage de brance d'entrée X30.11, X30.12 Précision de tension Plage de tension max. Précision des entrées analogiques Précision des entrées analogiques Précision des entrées analogiques Précision de sentrées analogiques Précision de sorties digitales Porne X30/6, 7 Plage de borne Plage de tension à la sortie digitale/en fréquence Précision de tension à la sortie digitale/en fréquence Précision de la sortie max. Plage max. Précision de la sortie analogique Précision de la sortie analogi	Niveau de tension	0-24 V CC
Plage de tension, « 0 » logique NPN (terre = 24 V) < 14 V CC	Niveau de tension, « 0 » logique PNP (terre = 0 V)	< 5 V CC
Plage de tension, « 1 » logique NPN (terre = 24 V) > 19 V CC Tension maximale sur l'entrée 28 V continue Plage de fréquence d'impulsion 0-110 kHz Cycle d'utilisation, durée d'impulsion min. 4,5 ms Impédance d'entrée > 2 kC Entrée analogique - Borne X30/11, 12 Service de borne N° de borne X30.11, X30.12 Niveau de tension 0-10 V Impédance d'entrée > 20 V Résolution des entrées analogiques 10 bits (signe +) Niveau de tension 0-10 V Impédance d'entrée > 20 V Résolution des entrées analogiques 10 bits (signe +) Précision des entrées analogiques Erreur max. 0,5 % de l'échelle totale Largeur de bande FC 301: 20 Hz/FC 302: 100 Hz Sorties digitales - Borne X30/6, 7 Nombre de sorties digitales - Borne X30/6, 7 Nombre de sorties digitales - Borne X30/6, 7 20 V Niveau de tension à la sortie digitale/en fréquence 2-2 V Courant de sortie max. 40 mA Charge capacitive max. € 600 Ω Fréquence de sortie minimale € 7 € 20 €	Niveau de tension, « 1 » logique PNP (terre = 0 V)	> 10 V CC
Tension maximale sur l'entrée 28 V continu Plage de fréquence d'impulsion 0-110 kHz Cycle d'utilisation, durée d'impulsion min. 4,5 ms Impédance d'entrée > 2 kΩ² Entrée analogique - Borne X30/11, 12 N° de borne X30.11, X30.12 Modes Tension Niveau de tension 0-10 V Impédance d'entrée > 10 kΩ Tension max. 20 V Résolution des entrées analogiques 10 bits (signe +) Précision des entrées analogiques Erreur max. 0,5 % de l'échelle totale Largeur de bande FC 301: 20 Hz/FC 302: 100 Hz Sorties digitales - Borne X30/6, 7 Frombre de sorties digitales 2 N° de borne X30.6, X30.7 Niveau de tension à la sortie digitale/en fréquence 2 2 V Courant de sortie max. 40 mA Charge capacitive max. 40 mA Charge capacitive max. 40 mA Charge capacitive max. 410 mF Fréquence de sortie maximale 5 32 kHz Précision de la sortie en fréquence Erreur max: 0,1 % de l'échelle totale Sortie analogique - Borne X30/8 Erreur max: 0,1 % de l'échelle	Plage de tension, « 0 » logique NPN (terre = 24 V)	< 14 V CC
Plage de fréquence d'impulsion (urée d'impulsion min. 0-110 kHz Cycle d'utilisation, durée d'impulsion min. 4,5 ms Impédance d'entrée > 2 kΩ Entrée analogique - Borne X30/11, 12 Service de borne X30.11, X30.12 N° de borne X30.11, X30.12 Modes Tension Niveau de tension 0-10 V Impédance d'entrée > 10 kΩ Tension max 20 V Résolution des entrées analogiques Erreur max. 0,5 % de l'échelle totale Largeur de bande Erreur max. 0,5 % de l'échelle totale Largeur de bande FC 301: 20 Hz/FC 302: 100 Hz Sorties digitales - Borne X30/6, 7 Sorties digitales - Borne X30/6, 7 N° de borne X30.6, X30.7 N° de borne X30.6, X30.7 N° de borne X30.6, X30.7 N° de borne X30.6, X30.7 Qurant de sortie max. 40 mA Charge max. 200 Ω Qurant de sortie max. 40 mA Charge max. 200 Ω Qurant de sortie maximale 200 Ω Fréquence de sortie maximale 20 La Fréquence 20 La Fréquence de sortie maximale 20 La Fréquence de sortie m	Plage de tension, « 1 » logique NPN (terre = 24 V)	> 19 V CC
Cycle d'utilisation, durée d'impulsion min.4,5 msImpédance d'entrée> 2 kΩEntrée analogique - Borne X30/11, 122N° de borneX30.11, X30.12ModesTensionNiveau de tension0-10 kΩImpédance d'entrée> 10 kΩTension max.20 vRésolution des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 72Nombre de sorties digitales - Borne X30/6, 72Nombre de sorties digitales - Borne X30/6, 72Norde borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence2Courant de sortie max.40 mACharge max.≤ 600 ΩCharge capacitive max.< 10 nF	Tension maximale sur l'entrée	28 V continu
Impédance d'entrée> 2 kΩEntrée analogique - Borne X30/11, 122Nombre d'entrées analogiques2N° de borneX30.11, X30.12ModesTensionNiveau de tension0-10 VImpédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7Tension maxNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.\$ 600 ΩCharge capacitive max.10 nEFréquence de sortie minimale0 HzFréquence de sortie maximale\$ 32 kHzPrécision de la sortie en fréquenceErreur max: 0,1 % de l'échelle totaleSortie analogique - Borne X30/81Nombre de sorties analogiques1N° de borneX30.8Nombre de sortie analogique500 ΩPlage de courant de la sortie analogique500 ΩPlage de courant de la sortie analogique500 ΩPrécision de la sortie analogique500 ΩPrécision de la sortie analogique500 Ω	Plage de fréquence d'impulsion	0-110 kHz
Entrée analogique - Borne X30/11, 12Nombre d'entrées analogiques2N° de borneX30.11, X30.12ModesTensionNiveau de tension0-10 VImpédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7TNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.< 10 nF	Cycle d'utilisation, durée d'impulsion min.	4,5 ms
Nombre d'entrées analogiques2N° de borneX30.11, X30.12ModesTensionNiveau de tension0-10 vImpédance d'entrée> 10 kΩTension max.20 vRésolution des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302 : 100 HzSorties digitales - Borne X30/6, 7Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 vCourant de sortie max.40 mACharge capacitive max.< 600 ΩCharge capacitive max.< 10 nFFréquence de sortie minimale0 HzFréquence de sortie maximale≤ 32 kHzPrécision de la sortie en fréquenceErreur max.: 0,1 % de l'échelle totaleSortie analogique - Borne X30/81N° de borneErreur de sortie max.N° de borneX30.8Nombre de sorties analogiques1N° de borneX30.8Nombre de sorties analogiques1N° de borneX30.8N° de borne<	Impédance d'entrée	> 2 kΩ
N° de borneX30.11, X30.12ModesTensionNiveau de tension0.10 kΩImpédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiques10 bits (signe +)Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7TensionNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0.24 VCourant de sortie max.40 mACharge capacitive max.< 600 Ω		
ModesTensionNiveau de tension0-10 VImpédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiques110 bits (signe + VPrécision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7TNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≤ 600 ΩCharge capacítive max.< 10 nF	Nombre d'entrées analogiques	2
Niveau de tension0-10 VImpédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiques10 bits (signe +)Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302 : 100 HzSorties digitales - Borne X30/6, 72Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≤ 600 ΩCharge capacitive max.< 10 nF	N° de borne	X30.11, X30.12
Impédance d'entrée> 10 kΩTension max.20 VRésolution des entrées analogiques10 bits (signe +)Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7TO 10 Hz/FC 302: 100 HzNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF	Modes	Tension
Tension max.20 VRésolution des entrées analogiques10 bits (signe +)Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≤ 600 ΩCharge capacitive max.< 10 nF		0-10 V
Résolution des entrées analogiques10 bits (signe +)Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302: 100 HzSorties digitales - Borne X30/6, 7TO 10 HzNombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 mF	Impédance d'entrée	> 10 kΩ
Précision des entrées analogiquesErreur max. 0,5 % de l'échelle totaleLargeur de bandeFC 301: 20 Hz/FC 302 : 100 HzSorties digitales - Borne X30/6, 7Sorties digitalesN° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≤ 600 ΩCharge capacitive max.< 10 nF	Tension max.	20 V
Largeur de bandeFC 301: 20 Hz/FC 302 : 100 HzSorties digitales - Borne X30/6, 7Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≤ 600 ΩCharge capacitive max.< 10 nF		10 bits (signe +)
Sorties digitales - Borne X30/6, 7Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF	3 1	
Nombre de sorties digitales2N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF	Largeur de bande	FC 301: 20 Hz/FC 302 : 100 Hz
N° de borneX30.6, X30.7Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF		
Niveau de tension à la sortie digitale/en fréquence0-24 VCourant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF		2
Courant de sortie max.40 mACharge max.≥ 600 ΩCharge capacitive max.< 10 nF		X30.6, X30.7
Charge max.≥ 600 ΩCharge capacitive max.< 10 nF	Niveau de tension à la sortie digitale/en fréquence	0-24 V
Charge capacitive max.< 10 nFFréquence de sortie minimale0 HzFréquence de sortie maximale≤ 32 kHzPrécision de la sortie en fréquenceErreur max.: 0,1 % de l'échelle totaleSortie analogique - Borne X30/81Nombre de sorties analogiques1N° de borneX30.8Plage de courant de la sortie analogique0-20 mACharge max. à la terre - sortie analogique500 ΩPrécision de la sortie analogiqueErreur max.: 0,5 % de l'échelle totale	Courant de sortie max.	40 mA
Fréquence de sortie minimale 0 Hz Fréquence de sortie maximale ≤ 32 kHz Précision de la sortie en fréquence Erreur max. : 0,1 % de l'échelle totale Sortie analogique - Borne X30/8 Nombre de sorties analogiques N° de borne X30.8 Plage de courant de la sortie analogique 0-20 mA Charge max. à la terre - sortie analogique 500 Ω Précision de la sortie analogique Erreur max. : 0,5 % de l'échelle totale	Charge max.	≥ 600 Ω
Fréquence de sortie maximale ≤ 32 kHz Précision de la sortie en fréquence Erreur max. : 0,1 % de l'échelle totale Sortie analogique - Borne X30/8 1 Nombre de sorties analogiques 1 N° de borne X30.8 Plage de courant de la sortie analogique 0-20 mA Charge max. à la terre - sortie analogique 500 Ω Précision de la sortie analogique Erreur max. : 0,5 % de l'échelle totale		< 10 nF
Précision de la sortie en fréquenceErreur max. : 0,1 % de l'échelle totaleSortie analogique - Borne X30/81Nombre de sorties analogiques1N° de borneX30.8Plage de courant de la sortie analogique0-20 mACharge max. à la terre - sortie analogique500 ΩPrécision de la sortie analogiqueErreur max. : 0,5 % de l'échelle totale		0 Hz
Sortie analogique - Borne X30/8Nombre de sorties analogiques1N° de borneX30.8Plage de courant de la sortie analogique0-20 mACharge max. à la terre - sortie analogique500 ΩPrécision de la sortie analogiqueErreur max. : 0,5 % de l'échelle totale		≤ 32 kHz
Nombre de sorties analogiques 1 N° de borne X30.8 Plage de courant de la sortie analogique 0-20 mA Charge max. à la terre - sortie analogique 500 Ω Précision de la sortie analogique Erreur max. : 0,5 % de l'échelle totale	Précision de la sortie en fréquence	Erreur max. : 0,1 % de l'échelle totale
N° de borneX30.8Plage de courant de la sortie analogique0-20 mACharge max. à la terre - sortie analogique500 ΩPrécision de la sortie analogiqueErreur max. : 0,5 % de l'échelle totale		
Plage de courant de la sortie analogique0-20 mACharge max. à la terre - sortie analogique500 ΩPrécision de la sortie analogiqueErreur max. : 0,5 % de l'échelle totale		1
Charge max. à la terre - sortie analogique $500~\Omega$ Précision de la sortie analogique Erreur max. : 0,5 % de l'échelle totale		X30.8
Précision de la sortie analogique Erreur max. : 0,5 % de l'échelle totale		0-20 mA
		500 Ω
Résolution de la sortie analogique 12 bits		Erreur max. : 0,5 % de l'échelle totale
	Résolution de la sortie analogique	12 bits

11.2.2 Option de codeur VLT® MCB 102

Le module codeur peut être utilisé comme source du retour pour le contrôle de flux en boucle fermée (1-02 Source codeur arbre moteur) et pour la commande de vitesse en boucle fermée (7-00 PID vit.source ret.). Configurer l'option de codeur dans le groupe de paramètres 17-** Opt retour codeur.

Utilisé pour :

- Boucle fermée VVC^{plus}
- Commande de vitesse du vecteur de flux
- Commande de couple du vecteur de flux
- Moteur à aimant permanent

Types de codeurs pris en charge :

Codeur incrémental : type TTL 5 V, RS-422, fréquence max. : 410 kHz

Codeur incrémental : 1 Vpp, sinus-cosinus

Codeur Hiperface® : absolu et sinus-cosinus (Stegmann/SICK)

Codeur EnDat: absolu et sinus-cosinus (Heidenhain), prend en charge la version 2.1

Codeur SSI: absolu

AVIS!

Il est recommandé d'utiliser des codeurs incrémentaux avec des moteurs PM du fait du risque de polarité.

AVIS!

Il est vivement recommandé de toujours alimenter le codeur via le MCB 102. Il conviendra d'éviter d'utiliser une alimentation externe pour le codeur.

Moniteur codeur:

Les 4 canaux du codeur (A, B, Z et D) sont surveillés : circuit ouvert et court-circuit peuvent être détectés. Pour chaque canal, un voyant vert s'allume lorsque le canal fonctionne correctement.

AVIS!

Les voyants sont uniquement visibles lorsque le LCP est démonté. La réaction en cas d'erreur du codeur peut être sélectionnée au par. 17-61 Surveillance signal codeur : [0] Désactivé, [1] Avertissement ou [2] Alarme.

Lorsque le kit d'option codeur est commandé séparément, il comprend :

- Option codeur MCB 102
- Fixation LCP et protection borniers plus grandes

L'option codeur ne prend pas en charge les variateurs de fréquence FC 302 fabriqués avant la semaine 50 de l'année 2004. Version logiciel min. : 2.03 (15-43 Version logiciel)

Connector	Codeur	Codeur SinCos	Codeur EnDat	Codeur SSI	Description
Designation	incrémental	Hiperface [®]			
X31	(se reporter à	(se reporter à			
	l'Illustration 11.3)	l'Illustration 11.4)			
1	NF			24 V*	Sortie 24 V (21-25 V, I _{max} : 125 mA)
2	NF	8 V CC			Sortie 8 V (7-12 V, I _{max} : 200 mA)
3	5 V CC		5 V CC	5 V*	Sortie 5 V (5 V ±5 %, I _{max} : 200 mA)
4	GND		GND	GND	GND
5	Entrée A	+COS	+COS		Entrée A
6	Entrée inv A	REFCOS	REFCOS		Entrée inv A
7	Entrée B	+SIN	+SIN		Entrée B
8	Entrée inv B	REFSIN	REFSIN		Entrée inv B
9	Entrée Z	+Données RS-485	Horloge sortie	Horloge sortie	Entrée Z OU +Données RS-485
10	Entrée inv Z	-Données RS-485	Horloge sortie	Horloge sortie inv.	Entrée Z OU -Données RS-485
			inv.		
11	NF	NF	Entrée données	Entrée données	Usage ultérieur
12	NF	NF	Entrée données	Entrée données inv.	Usage ultérieur
			inv.		
Max. 5 V sur X3	1.5-12				

Tableau 11.1 Connexions du codeur

^{*} Alimentation du codeur : voir les données sur le codeur

Illustration 11.3 Codeur incrémental

AVIS!

Longueur max. de câble 150 m.

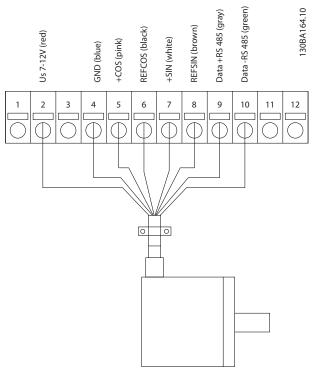
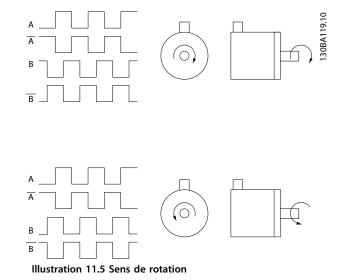



Illustration 11.4 Codeur SinCos Hiperface

11.2.3 Option du résolveur VLT® MCB 103

L'option résolveur MCB 103 sert d'interface entre le signal de retour du moteur du résolveur et le VLT[®] AutomationDrive. Les résolveurs sont généralement utilisés comme dispositif de retour de moteur pour les moteurs synchrones à aimant permanent sans balais.

Lorsque l'option résolveur est commandée séparément, elle comprend :

- Option résolveur MCB 103
- Fixation LCP et protection borniers plus grandes

Sélection de paramètres : 17-5* Interface résolveur.

L'option de résolveur MCB 103 gère plusieurs types de résolveurs.

	Pôles résolveur	17-50 Pôles: 2 *2
	Tension entrée	17-51 Tension d'entrée: 2,0-8,0 V _{rms} * 7,
	résolveur	0 V _{rms}
	Fréquence d'entrée	17-52 Fréquence d'entrée: 2–15 kHz
	résolveur	*10,0 kHz
	Rapport de transfor-	17-53 Rapport de transformation: 0.1–1.1
	mation	*0.5
L	mation	
ŀ	Tension d'entrée	Max 4 Vrms
ŀ	Tension d'entrée	

Tableau 11.2 Spécifications du résolveur

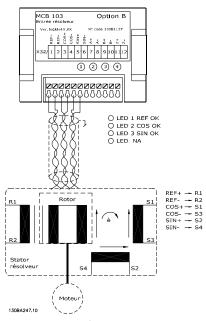


Illustration 11.6 Entrée résolveur MCB 103

Indicateurs lumineux

La LED 1 est allumée lorsque le signal de référence est OK sur le résolveur.

La LED 2 est allumée lorsque le signal Cosinus est OK sur le résolveur.

La LED 3 est allumée lorsque le signal Sinus est OK sur le résolveur.

Les LED sont actives lorsque le 17-61 Surveillance signal codeur est réglé sur [1] Avertissement ou [2] Alarme.

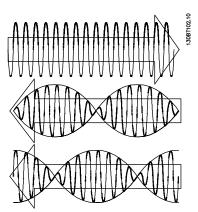


Illustration 11.7 Moteur à aimant permanent (PM) avec un résolveur comme retour vitesse

Exemple de configuration

Dans cet exemple, on utilise un moteur à aimant permanent (PM) avec un résolveur comme retour vitesse. Un moteur PM doit généralement fonctionner en mode flux.

Câblage

La longueur de câble est de 150 m maximum lorsque l'on utilise une paire torsadée.

AVIS!

Les câbles du résolveur doivent être blindés et séparés des câbles du moteur.

AVIS!

Le blindage du câble du résolveur doit être correctement connecté à la plaque de découplage et au châssis (terre) du côté moteur.

AVIS!

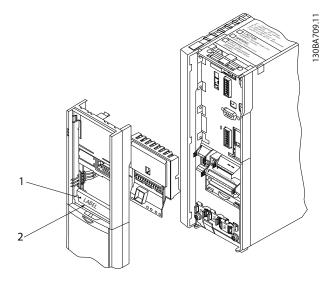
Toujours utiliser des câbles de moteur et de hacheur de freinage blindés.

1-00 Mode Config.	[1] Boucle fermée vit.
1-01 Principe Contrôle	[3] Flux retour codeur
Moteur	
1-10 Construction moteur	[1] PM, SPM non saillant
1-24 Courant moteur	Plaque signalétique
1-25 Vit.nom.moteur	Plaque signalétique
1-26 Couple nominal cont.	Plaque signalétique
moteur	
L'AMA est impossible sur les	s moteurs PM
1-30 Résistance stator (Rs)	Fiche technique du moteur
30-80 Inductance axe d	Fiche technique du moteur (mH)
(Ld)	
1-39 Pôles moteur	Fiche technique du moteur
1-40 FCEM à 1000 tr/min.	Fiche technique du moteur
1-41 Décalage angle	Fiche technique du moteur
moteur	(généralement zéro)
17-50 Pôles	Fiche technique du résolveur
17-51 Tension d'entrée	Fiche technique du résolveur
17-52 Fréquence d'entrée	Fiche technique du résolveur
17-53 Rapport de transfor-	Fiche technique du résolveur
mation	
17-59 Interface résolveur	[1] Activé

Tableau 11.3 Paramètres à régler

11.2.4 Carte relais VLT® MCB 105

L'option de relais MCB 105 inclut 3 contacts SPDT et doit être installée dans l'emplacement de l'option B.


Données électriques

Charge max. sur les bornes (CA-1) ¹⁾ (charge résistive)	240 V CA 2 A
Charge max. sur les bornes (CA-15) ¹⁾ (charge inductive à cosφ 0,4)	240 V CA 0,2 A
Charge max. sur les bornes (CC-1) ¹⁾ (charge résistive)	24 V CC 1 A
Charge max. sur les bornes (CC-13) ¹⁾ (charge inductive)	24 V CC 0,1 A
Charge min. sur les bornes (CC)	5 V 10 mA
Vitesse de commutation max. à charge nominale/min.	6 min ⁻¹ /20 s ⁻¹

¹⁾ CEI 947 parties 4 et 5


Lorsque le kit d'option relais est commandé séparément, il comprend

- Module de relais MCB 105
- Fixation LCP et protection borniers plus grandes
- Étiquette permettant de recouvrir l'accès aux commutateurs S201, S202 et S801
- Étriers de fixation des câbles au module relais

1	IMPORTANT! L'étiquette DOIT être placée sur le châssis du LCP, comme illustré (approbation UL).	
2	Carte relais	

Illustration 11.8 Protections de types A2-A3-B3

1	IMPORTANT! L'étiquette DOIT être placée sur le châssis du
	LCP, comme illustré (approbation UL).

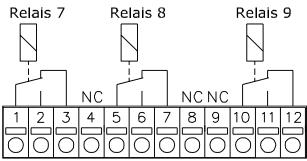
2 Carte relais

Illustration 11.9 Protections de types A5-B1-B2-B4-C1-C2-C3-C4

AAVERTISSEMENT

Avertissement alimentation double

Comment ajouter l'option de carte relais MCB 105 :


- 1. Couper l'alimentation du variateur de fréquence.
- Couper l'alimentation des connexions sous tension sur les bornes de relais.
- 3. Retirer le LCP, la protection borniers et la fixation du LCP du variateur de fréquence.
- 4. Installer l'option MCB 105 dans l'emplacement B.
- Brancher les câbles de commande et les fixer à l'aide des bandes fournies.
- 6. Veiller à ce que la longueur de fil attachée soit correcte (voir l'*Illustration 11.11*).
- 7. Ne pas mélanger éléments sous tension (haute tension) et signaux de commande (PELV).
- 8. Installer la fixation du LCP et la protection borniers correspondantes.
- 9. Replacer le LCP.
- 10. Remettre le variateur de fréquence sous tension.
- 11. Sélectionner les fonctions de relais aux par. 5-40 Fonction relais [6-8], 5-41 Relais, retard ON [6-8] et 5-42 Relais, retard OFF [6-8].

AVIS!

La zone [6] est le relais 7, la zone [7] est le relais 8 et la zone [8] est le relais 9

AVIS!

Pour accéder à l'interrupteur de terminaison S801 du RS-485 ou aux interrupteurs de courant/tension S201/S202, démonter la carte relais (voir l'*Illustration 11.8* et l'*Illustration 11.9*, position 2).

130BA162.10

Illustration 11.10 Relais

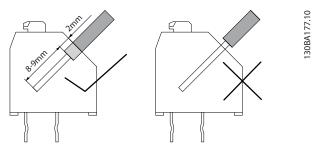
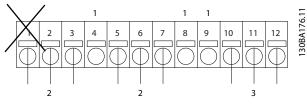
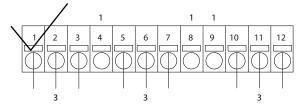
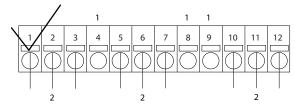





Illustration 11.11 Insertion correcte des fils

1	NF
2	Pièce sous tension
3	PELV

Illustration 11.12 Câblage correct du relais

AVIS!

Ne pas mélanger les systèmes 24/48 V et les systèmes haute tension.

11.2.5 Option d'interface PLC de sécurité VLT® MCB 108

L'option d'interface PLC de sécurité MCB 108 a été conçue pour être intégrée entre la sécurité bipolaire (plus/moins) sur le PLC de sécurité et l'entrée de l'arrêt de sécurité sur le FC 302. L'interface du PLC de sécurité permet à la sortie sécurité du PLC de sécurité de maintenir les impulsions de test sur les sorties plus et moins sans influence sur le signal du capteur de l'arrêt de sécurité T37.

Elle peut être utilisée en association avec des dispositifs de sécurité afin de satisfaire aux conditions des normes CEI 61800-5-2 SIL 2, ISO13849-1 cat. 3 pour l'Absence sûre du couple (STO).

Le module d'option MCB 108 est isolé galvaniquement par un variateur CC/CC interne et peut être installé dans l'emplacement B.

Tension d'entrée (CC)	18-28 V CC
Entrée de courant typique (CC)	60 mA
Entrée de courant max. (CC)	110 mA CC
Courant d'appel max. (CC)	500 mA CC
Tension de sortie (CC)	20 V CC à Vapp = 24 V
Délai de mise sous tension	1 ms
Délai de mise hors tension	3 ms

Respecter les précautions suivantes :

- Le FC 302 avec MCB 108 (y compris les connexions entre X31/9 et la borne 37) doit être placé dans une protection IP54
- L'activation de l'arrêt de sécurité (c.-à-d. suppression de la tension 24 V CC sur la borne 37 en supprimant la tension à l'entrée des deux pôles du MCB 108) ne fournit pas de sécurité électrique.
- Le dispositif de sécurité relié à l'entrée bipolaire du MCB 108 doit remplir le niveau d'exigences de sécurité de cat. 3/PL conformément à la norme ISO 13849-1 en ce qui concerne l'interruption de la tension/du courant alimentant le MCB 108. Cela s'applique aussi aux connexions entre le MCB 108 et le dispositif de sécurité.
- Lire et suivre les instructions concernant le dispositif de sécurité afin de le raccorder correctement au MCB 108.

130BA638.10

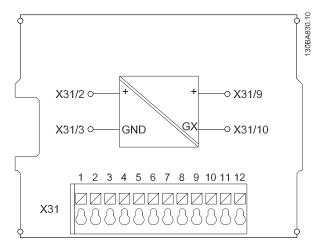


Illustration 11.13 Module d'option de l'interface PLC de sécurité MCB 108



Illustration 11.14 Raccordement de l'interface PLC de sécurité MCB 108

11.2.6 Carte thermistance PTC VLT® MCB 112

L'option MCB 112 permet la surveillance de la température d'un moteur électrique via une entrée thermistance PTC isolée galvaniquement. C'est une option B pour le variateur de fréquence avec Absence sûre du couple.

Pour les différentes applications possibles, voir le chapitre 10 Exemples d'applications.

X44/1 et X44/2 sont les entrées de thermistance. X44/12 active l'absence sûre du couple du variateur de fréquence (borne 37) si les valeurs de thermistance le rendent nécessaires et X44/10 informe le variateur de fréquence que la demande d'absence sûre du couple provient du MCB 112 afin d'assurer une gestion adaptée des alarmes. Un des paramètres des entrées digitales (ou l'entrée digitale d'une option montée) doit être réglé sur [80] Carte PTC 1 afin d'utiliser l'information provenant de X44/10. Configurer le par. 5-19 Arrêt de sécurité borne 37 sur la fonctionnalité Absence sûre du couple souhaitée (alarme d'arrêt de sécurité par défaut).

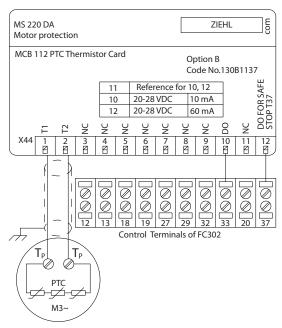


Illustration 11.15 Installation de MCB 112

Certification ATEX avec FC 102, FC 202 et FC 302

Le MCB 112 a été certifié ATEX, ce qui signifie que le variateur de fréquence avec le MCB 112 peut être utilisé avec des moteurs dans des atmosphères potentiellement explosives. Voir le *Manuel d'utilisation de la carte thermistance PTC MCB 112 VLT®* pour plus d'informations.

Illustration 11.16 ATmosphère EXplosive (ATEX)

Données électriques

PTC conforme aux normes DIN 44081 et DIN 44082	
Chiffre	1 à 6 résistances en série
Valeur de fermeture	3,3 Ω 3,65 Ω 3,85 Ω
Valeur de reset	1,7 Ω 1,8 Ω 1,95 Ω
Tolérance de déclenchement	± 6 °C
Résistance collective de la boucle du capteur	< 1,65 Ω
Tension de la borne	\leq 2,5 V pour R \leq 3,65 Ω , \leq 9 V pour R $= \infty$
Courant du capteur	≤ 1 mA
Court-circuit	20 Ω ≤ R ≤ 40 Ω
Puissance consommée	60 mA
Conditions de test	
EN 60 947-8	
Mesure de résistance aux surtensions	6 000 V
Catégorie de surtension	III
Degré de pollution	2
Mesure d'isolation de tension Vbis	690 V
Isolation galvanique fiable jusqu'à Vi	500 V
Température ambiante perm.	-20 °C à +60 °C
	EN 60068-2-1 Chaleur sèche
Humidité	5-95 %, pas de condensation autorisée
Résistance aux vibrations	10 à 1 000 Hz 1,14 g
Résistance aux chocs	50 g
Valeurs du système de sécurité	
EN 61508 pour Tu = 75 °C continu	
SIL	2 pour cycle de maintenance de 2 ans
	1 pour cycle de maintenance de 3 ans
HFT	0
PFD (pour test fonctionnel annuel)	4.10 *10 ⁻³
SFF	78%
$\lambda_s + \lambda_{DD}$	8494 FIT
λ _{DU}	934 FIT
Nº de commande 130B1137	

11.2.7 Carte relais étendue VLT® MCB 113

Le MCB 113 ajoute 7 entrées digitales, 2 sorties analogiques et 4 relais SPDT aux E/S standard du variateur de fréquence pour une plus grande souplesse et une conformité aux recommandations allemandes NAMUR NE37.

La carte MCB 113 est une option C1 standard du VLT® AutomationDrive et est automatiquement détectée après montage.

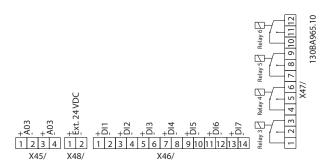


Illustration 11.17 Raccordements électriques de la MCB 113

La MCB 113 peut être reliée à une alimentation externe 24 V à la borne X58/ pour assurer une isolation galvanique entre le VLT[®] AutomationDrive et la carte d'option. Si l'isolation galvanique n'est pas nécessaire, la carte d'option peut être alimentée par du courant interne 24 V provenant du variateur de fréquence.

AVIS!

Il est possible de combiner des signaux 24 V avec des signaux haute tension dans les relais tant qu'il subsiste un relais inutilisé entre eux.

Pour configurer la MCB 113, utiliser les groupes de paramètres 5-1* Entrée digitale, 6-7* Sortie analogique 3, 6-8* Sortie analogique 4, 14-8* Options, 5-4* Relais et 16-6* Entrées et sorties.

AVIS!

Dans le groupe de paramètres 5-4* Relais, le tableau [2] correspond au relais 3, le tableau [3] correspond au relais 4, le tableau [4] correspond au relais 5 et le tableau [5] correspond au relais 6.

Données électriques

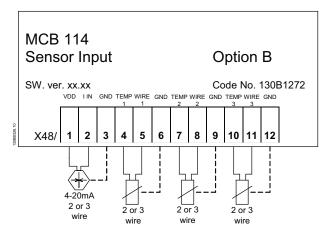
Relais	
Nombre	4 interrupteurs unipolaires bidirectionnels
Charge à 250 V CA/30 V CC	8 A
Charge à 250 V CA/30 V CC avec cos = 0,4	3,5 A
Catégorie de surtension (contact-terre)	III
Catégorie de surtension (contact-contact)	II
Combinaison de signaux 250 V et 24 V	Possible avec un relais intermédiaire inutilisé
Retard débit max	10 ms
Isolé de la terre/du châssis pour une utilisation sur des systèmes de	e réseau IT
Entrées digitales	
Nombre	7
Plage	0/24 V
Mode	PNP/NPN
Impédance d'entrée	4 kW
Bas niveau de déclenchement	6,4 V
Haut niveau de déclenchement	17 V
Retard débit max	10 ms
Sorties analogiques	
Nombre	2
Plage	0/4 -20 mA
codeur	11 bits
Linéarité	<0,2%

11.2.8 Option d'entrée du capteur VLT® MCB 114

La carte d'option d'entrée du capteur MCB 114 peut être utilisée pour :

- Servir d'entrée de capteur pour les transmetteurs thermiques PT100 et PT1000 afin de surveiller les températures des paliers.
- Servir d'extension générale de sorties analogiques avec une entrée supplémentaire pour le contrôle de zones multiples ou les mesures de pression différentielle.
- Assistance étendue Régulateurs PID étendus avec des E/S pour les entrées de points de consigne, de transmetteurs/capteurs.

Les moteurs typiques, conçus avec des capteurs de température pour la protection des paliers contre la surcharge, sont équipés de 3 capteurs de température PT100/PT1000 : un à l'avant, un dans le palier à l'arrière et un dans les bobines du moteur. L'option MCB 114 Danfoss prend en charge des capteurs à 2 ou 3 fils avec des températures limites individuelles pour les sous/sur-températures. Le type de capteur (PT100 ou PT1000) est détecté automatiquement lors de la mise sous tension.


L'option peut générer une alarme si la température mesurée est en dessous de la limite inférieure ou au-dessus de la limite supérieure spécifiées par l'utilisateur. La température individuelle mesurée à chaque entrée de capteur peut s'afficher sur l'écran ou dans les paramètres d'affichage. En présence d'une alarme, les relais ou les sorties digitales peuvent être programmés pour être actifs au niveau haut en sélectionnant [21] Avertis.thermiq. dans le groupe de paramètres 5-** E/S Digitale.

Une condition de panne est associée à un numéro commun d'avertissement/alarme. Il s'agit ici de l'alarme/avertissement 20, Erreur entrée temp. Toute sortie disponible peut être programmée pour être active en cas d'avertissement ou d'alarme.

11.2.8.1 Spécifications électriques et mécaniques

Entrée analogique	
Nombre d'entrées analogiques	1
Format	0-20 mA ou 4-20 mA
Fils	2
Impédance d'entrée	<200 Ω
Fréquence d'échantillonnage	1 kHz
Filtre d'ordre 3	100 Hz à 3 dB
L'option peut alimenter le capteur analogique en 24 V CC (borne 1).	
Entrée de capteur de température	
Nombre d'entrées analogiques prenant en charge PT100/1000	3
Type de signal	PT100/1000
Connexion	PT 100 2 ou 3 fils/PT1000 2 ou 3 fils
Fréquence d'entrée des PT100 et PT1000	1 Hz pour chaque canal
codeur	10 bits
	-50-204 °C
Plage de température	-58-399 °F
Isolation galvanique	
Les capteurs devant être connectés sont censés être isolés galvaniquement	du niveau de la
tension secteur.	CEI 61800-5-1 et UL 508C
Câblage	
Longueur max. de câble de signal	500 m

11.2.8.2 Câblage électrique

Borne	Nom	Fonction
1	VDD	Alimentation 24 V CC du
		capteur 4-20 mA
2	l en	Entrée 4-20 mA
3	GND	Entrée analogique GND
4, 7, 10	Temp 1, 2, 3	Entrée température
5, 8, 11	Fil 1, 2, 3	Entrée du 3 ^{ème} fil si des
		capteurs à 3 fils sont utilisés
6, 9, 12	GND	Entrée temp. GND

Illustration 11.18 MCB 114

11.2.9 Option de sécurité VLT® MCB 15x

AVIS!

Voir le *Manuel d'utilisation de l'option de sécurité du MCB 15x* pour plus d'informations.

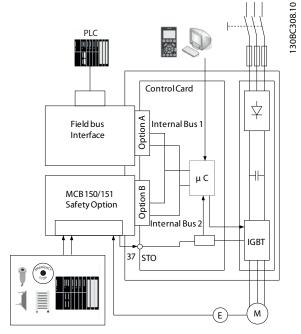


Illustration 11.19 Système de variateur sûr

Le MCB 15x remplit des fonctions de sécurité conformément à la norme EN CEI 61800-5-2. Il surveille les séquences de mouvement sûr des variateurs de fréquence, qui sont arrêtés en toute sécurité et désactivés en cas d'erreur.

Intégré dans un VLT[®] AutomationDrive FC 302, le MCB 15x nécessite un signal provenant d'un capteur. Un système de variateur sûr de Danfoss est composé :

- d'un variateur de fréquence, VLT[®]
 AutomationDrive FC 302
- d'un MCB 15x intégré dans le variateur de fréquence

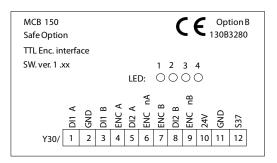
Le MCB 15x

- active les fonctions de sécurité ;
- surveille les séquences de mouvement sûr ;
- signale l'état des fonctions de sécurité au système de contrôle de la sécurité par l'intermédiaire d'un bus de terrain Profibus éventuellement connecté
- active la réaction aux pannes sélectionnée
 (Absence sûre du couple ou Arrêt de sécurité 1)
 en cas d'erreur

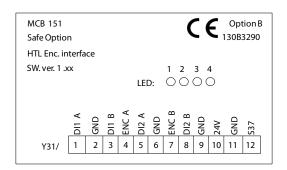
130BC306.10

L'option de sécurité MCB 15x est conçue comme option standard pour le VLT[®] AutomationDrive FC 302 et est automatiquement détectée après le montage.

Le MCB 15x peut surveiller l'arrêt, le démarrage ou la vitesse d'un dispositif à mouvement rotatif ou latéral. Dans le cadre de la surveillance de vitesse, l'option est souvent associée à une protection matérielle, à des portes d'accès et à des portes de sécurité équipées d'interrupteurs de sécurité à verrouillage électromagnétique. Lorsque la vitesse du dispositif surveillé passe en dessous du point de commutation défini (là où la vitesse n'est plus considérée comme dangereuse), le MCB 15x définit la sortie S37 sur basse. Cela permet à l'opérateur d'ouvrir la porte de sécurité. Dans les applications de surveillance de la vitesse, la sortie de sécurité S37 est haute pendant l'exploitation (lorsque la vitesse du moteur du dispositif surveillé est inférieure au point de commutation défini). Lorsque la vitesse dépasse la valeur définie, ce qui indique une vitesse trop élevée (dangereuse), la sortie de sécurité est basse.


Le variateur de fréquence

- coupe l'alimentation du moteur ;
- fait passer le moteur en mode sans couple si l'Absence sûre du couple est activée.


Le système de contrôle de la sécurité

- active les fonctions de sécurité via les entrées du MCB 15x;
- évalue les signaux provenant de dispositifs de sécurité tels que :
 - boutons-poussoirs d'arrêt d'urgence
 - interrupteur magnétique sans contact
 - interrupteur d'interverrouillage
 - barrières immatérielles
- traite la fonction d'état du MCB 15x;
- assure une connexion sûre entre le MCB 15x et le système de contrôle de la sécurité;
- assure la détection des pannes lors de l'activation des fonctions de sécurité (courts-circuits entre les contacts, courts-circuits) sur le signal entre le système de contrôle de la sécurité et le MCB 15x.

Vue frontale

Illustration 11.20 MCB 150

Illustration 11.21 MCB 151

Caractéristiques techniques

MCB 150/MCB 151	
Puissance consommée	2 W (puissance consommée équivalente rapportée à VDD)
Consommation de courant VCC (5 V)	< 200 mA
Consommation de courant VDD (24 V)	< 30 mA (< 25 mA pour le MCB 150)
Entrées digitales	
Nombre d'entrées digitales	4 (2 entrées digitales de sécurité à 2 voies)
Plage de tension d'entrée	0 à 24 V CC
Plage de tension, logique 0	< 5 V CC
Plage de tension, logique 1	> 12 V CC
Tension d'entrée (max.)	28 V CC
Courant d'entrée (min.)	6 mA à Vapp = 24 V (courant d'appel, pic de 12 mA)
Résistance d'entrée	env. 4 kΩ
Isolation galvanique	Non
Résistance aux courts-circuits	Oui
Temps de reconnaissance de l'impulsion d'entrée (min.)	3 ms
Période de discordance (min.)	9 ms
	< 30 m (câble non blindé ou blindé)
Longueur de câble	> 30 m (câble blindé)
Sortie digitale (sortie de sécurité)	
Nombre de sorties	1
Tension de sortie basse	< 2 V CC
Tension de sortie haute	> 19,5 V CC
Tension de sortie (max.)	24,5 V CC
Courant de sortie nominal (à 24 V)	< 100 mA
Courant de sortie nominal (à 0 V)	< 0,5 mA
Isolation galvanique	Non
Impulsions d'essai pour diagnostic	300 us
Résistance aux courts-circuits	Oui
Longueur de câble	< 30 m (câble blindé)
Entrée codeur TTL (MCB 150)	
Nombre d'entrées codeur	4 (2 entrées différentielles A/A, B/B)
Types de codeur	TTL, codeurs incrémentaux RS-422/RS-485
Plage de tension différentielle d'entrée	-7 à +12 V CC
Tension de mode commun en entrée	-12 à +12 V CC
Tension d'entrée, logique 0 (diff.)	< -200 mV CC
Tension d'entrée, logique 1 (diff.)	> +200 mV CC
Résistance d'entrée	env. 120 Ω
Fréquence maximale	410 KHz
Résistance aux courts-circuits	Oui

câble

< 150 m (testé avec un câble blindé - Heidenhain AWM Style 20963 80 °C 30 V E63216, 100 m de câble

de moteur blindé, pas de charge sur le moteur)

Nombre d'entrées codeur	2 (2 entrées à terminaison unique A ; B)
Types de codeur	Codeurs incrémentaux HTL ; détecteur de proximité HTL
Entrée logique	PNP
Plage de tension d'entrée	0 à 24 V CC
Plage de tension, logique 0	< 5 V CC
Plage de tension, logique 1	> 12 V CC
Tension d'entrée (max.)	28 V CC
Résistance d'entrée	env. 4 Ω
Fréquence maximale	110 kHz
Résistance aux courts-circuits	Oui
Longueur de < 100 m (testé avec ui	n câble blindé - Heidenhain AWM Style 20963 80 °C 30 V E63216, 100 m de câble
câble	de moteur blindé, pas de charge sur le moteur)
Sortie alimentation 24 V	
Tension d'alimentation	24 V CC (tolérance de tension : entre +0,5 V CC et -4,5 V CC)
Courant de sortie maximal	150 mA
Résistance aux courts-circuits	Oui
	< 30 m (câble non blindé ou blindé)
Longueur de câble	> 30 m (câble blindé)
Section E/S à la terre	
	< 30 m (câble non blindé ou blindé)
Longueur de câble	> 30 m (câble blindé)
Sections de câble	
Tension d'alimentation des entrées/	0,75 mm ² /AWG 18, AEH sans collet en plastique conformément à la norme DIN
sorties digitales	46228/1
Caractéristiques de réinitialisation	
	≤ 5 ms (MCB 15x)
	≤ 5 ms (variateur de fréquence)
Temps de reset manuel	≤ 10 ms (bus de terrain)
Temps d'impulsion de reset manuel	10 μs (MCB 15x et variateur de fréquence)
Temps de reset automatique	≤ 4 ms
Temps de reset au démarrage	≤ 5 s (42-90 Restart Safe Option)
Temps de réponse	
Temps de réponse de l'entrée à la sortie	≤ 2 ms
Arrêt d'urgence jusqu'au début de SS1/SLS	≤ 7 ms
Temps de détection croisée des défauts	≤ 3 ms (à la sortie activée)

<u>Janfoss</u>

11.2.10 Adaptateur de l'option C VLT® MCF 106

L'adaptateur d'option C MCF 106 permet d'ajouter une option B supplémentaire au variateur de fréquence. Une option A et une B peuvent être installées dans les emplacements A et B standard de la carte de commande et jusqu'à 2 options B peuvent être installées dans l'adaptateur d'option C.

Pour plus d'informations, consulter le *Manuel d'installation* de l'adaptateur d'option C MCF 106 AutomationDrive FC 300 VLT[®].

11.3 Options de contrôle de mouvement

Commande

Les options de contrôle du mouvement (MCO) sont fournies sous la forme de cartes d'option pour l'installation sur site ou d'options intégrées. Pour toute adaptation, acheter un kit de montage. Chaque protection comporte son propre kit de montage. MCO 3xx doit être utilisé dans l'emplacement C0 mais peut être combiné à une autre option dans l'emplacement C1.

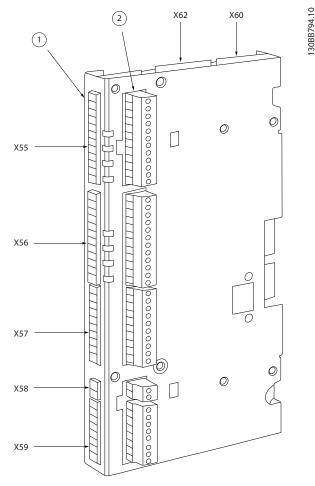

Kit de montage selon le type de protection	Nº de	
	commande	
Armoire		
A2 et A3 (40 mm pour une option C)	130B7530	
A2 et A3 (60 mm pour l'option C0 + C1)	130B7531	
B3 (40 mm pour une option C)	130B1413	
B3 (60 mm pour l'option C0 + C1)	130B1414	
Compact		
A5	130B7532	
B, C, D, E et F (sauf B3)	130B7533	

Tableau 11.4 Numéros de commande du kit de montage

Caractéristiques techniques

Pour les protections A5, B1 et B2, toutes les bornes MCO 3xx sont situées à côté la carte de commande. Retirer la protection avant pour accéder aux bornes de commande.

Les bornes de commande du MCO sont des connecteurs embrochables avec des bornes à vis. Les bornes X55 X56, X57, X58 et X59 sont dédoublées pour être utilisées pour les protections de types armoire et compact.

1	Bornier pour format armoire
2	Bornier pour format compact
X55	Codeur 2
X56	Codeur 1
X57	Entrées digitales
X58	Alimentation 24 V CC
X59	Sorties digitales
X62	MCO CAN Bus
X60	Connexions débogage (RS-485)

Illustration 11.22 Emplacement des borniers

Aperçu des bornes

N° de borne	Description nom codeur 2 (retour)		
1	Alim. +24 V		
2	Alim. +8 V		
3	Alim. +5 V		
4	GND		
5	А		
6	Pas A		
7	В		
8	Pas B		
9	Z/horloge		
10	pas de Z/pas d'horloge		
11	DONNÉES		
12	pas de DONNÉES		

Tableau 11.5 Bloc de raccordement X55

N° de borne	Description nom codeur 1 (maître)		
1	Alim. +24 V		
2	N/A		
3	Alim. +5 V		
4	GND		
5	А		
6	Pas A		
7	В		
8	Pas B		
9	Z/horloge		
10	pas de Z/pas d'horloge		
11	DONNÉES		
12	pas de DONNÉES		

Tableau 11.6 Bloc de raccordement X56

N° de borne	Description nom des entrées digitales		
1	Entrée digitale		
2	Entrée digitale		
3	Entrée digitale		
4	Entrée digitale		
5	Entrée digitale		
6	Entrée digitale		
7	Entrée digitale		
8	Entrée digitale		
9	Entrée digitale		
10	Entrée digitale		

Tableau 11.7 Bloc de raccordement X57

N° de borne	Description nom alimentation	
1	Alim. +24 V	
2	GND	

Tableau 11.8 Bloc de raccordement X58

N° de borne	Description nom sorties digitales		
1	Entrée/Sortie digitale		
2	Entrée/Sortie digitale		
3	Sortie digitale		
4	Sortie digitale		
5	Sortie digitale		
6	Sortie digitale		
7	Sortie digitale		
8	Sortie digitale		

Tableau 11.9 Bloc de raccordement X59

N° de borne	MCO débogage (RS 485)		
¹ CS	Sélection de la commande		
62	RxD/TxD - P		
63	RxD/TxD - N		
66	0 V		
67	+5 V		

Tableau 11.10 Bloc de raccordement X60

N° de borne	MCO CAN Bus	
1	N/A	
2	CAN - L	
3	DRAIN	
4	CAN - H	
5	N/A	

Tableau 11.11 Bloc de raccordement X62

11.3.1 Option de contrôle de mouvement VLT® MCO 305

Le MCO 305 est un contrôleur de mouvement librement programmable intégré, prévu pour les FC 301 et FC 302. Pour plus d'informations, consulter le chapitre 11.3.1 Options de contrôle de mouvement.

11.3.2 Contrôleur de synchronisation VLT® MCO 350

AVIS!

Le bloc de raccordement X59 comporte une fonctionnalité fixe pour MCO 350.

AVIS!

Le bloc de raccordement X62 n'est pas pris en charge pour MCO 350.

AVIS!

Le bloc de raccordement X60 n'est pas utilisé pour MCO 350.

Pour plus d'informations, voir le *chapitre 11.3.1 Options de contrôle de mouvement*.

11.3.3 Contrôleur de positionnement VLT® MCO 351

AVIS!

Le bloc de raccordement X59 comporte une fonctionnalité fixe pour MCO 351.

AVIS!

Le bloc de raccordement X62 n'est pas pris en charge pour MCO 351.

AVIS!

Le bloc de raccordement X60 n'est pas utilisé pour MCO 351.

Pour plus d'informations, voir le *chapitre 11.3.1 Options de contrôle de mouvement*.

11.4 Accessoires

11.4.1 Résistances de freinage

Dans les applications où le moteur est utilisé comme un frein, l'énergie est générée dans le moteur et renvoyée vers le variateur de fréquence. La tension du circuit CC du variateur de fréquence augmente lorsque l'énergie ne peut pas être transportée à nouveau vers le moteur. Dans les applications avec freinage fréquent et/ou charges à inertie élevée, cette augmentation peut entraîner une alarme de surtension du variateur de fréquence puis un arrêt. Les résistances de freinage sont utilisées pour dissiper l'énergie excédentaire liée au freinage par récupération. La résistance est sélectionnée en fonction de sa valeur ohmique, de son taux de dissipation de puissance et de sa taille physique. Danfoss propose une gamme complète de résistances de freinage spécialement conçues pour ses variateurs de fréquence. Voir le chapitre 5.5.3 Contrôle avec la fonction de freinage pour le dimensionnement des résistances de freinage. Les numéros de commande sont disponibles au chapitre 7 Commande.

11.4.2 Filtres sinus

Lorsqu'un moteur est contrôlé par un variateur de fréquence, il émet un bruit de résonance. Ce bruit, dû à la construction du moteur, se produit à chaque commutation de l'onduleur du variateur de fréquence. La fréquence du bruit de résonance correspond donc à la fréquence de commutation du variateur de fréquence.

Pour le FC 300, Danfoss fournit un filtre sinus pour amortir le bruit acoustique du moteur.

Le filtre réduit le temps de rampe d'accélération de la tension, la tension de charge de pointe U_{POINTE} et le courant d'ondulation ΔI vers le moteur, ce qui signifie que le courant et la tension deviennent quasiment sinusoïdaux. Par conséquent, le bruit acoustique du moteur est réduit au minimum.

Le courant d'ondulation des bobines du filtre sinus génère aussi un certain bruit. Remédier au problème en intégrant le filtre dans une armoire ou une installation similaire.

11.4.3 Filtres dU/dt

Les filtres dU/dt sont des filtres passe-bas à mode différentiel qui réduisent les pics de tensions entre phases de la borne du moteur et diminuent le temps de montée jusqu'à un niveau qui réduit la contrainte sur l'isolation des bobinages du moteur. Ce problème est particulièrement important pour les câbles moteur courts.

Comparés aux filtres sinus (voir le *chapitre 11.4.2 Filtres sinus*), les filtres dU/dt réduisent les fréquences supérieures à la fréquence de commutation.

11.4.4 Filtres en mode commun

Les noyaux hautes fréquences en mode commun réduisent les interférences électromagnétiques et éliminent les dommages dus aux décharges électriques. Ce sont des noyaux magnétiques spécifiques nanocristallins qui présentent une performance de filtrage supérieure par rapport aux noyaux de ferrite courants. Ils agissent comme un inducteur en mode commun (entre les phases et la terre).

Installés autour des trois phases du moteur (U, V, W), ils réduisent les courants en mode commun haute fréquence. Ainsi, l'interférence électromagnétique haute fréquence provenant du câble du moteur s'en trouve réduite.

11.4.5 Filtres harmoniques

Les filtres Danfoss AHF 005 et AHF 010 sont des filtres harmoniques avancés, sans comparaison possible avec les filtres électroniques harmoniques traditionnels. Les filtres harmoniques Danfoss ont été spécialement conçus pour s'adapter aux variateurs de fréquence Danfoss.

En raccordant les filtres harmoniques Danfoss AHF 005 ou AHF 010 face à un variateur de fréquence Danfoss, la distorsion de courant harmonique renvoyée vers le secteur est réduite à 5 % et 10 % respectivement.

11.4.6 Kit de protection IP21/Type 1

IP20/IP4X top/TYPE 1 est une protection optionnelle disponible pour les appareils compacts IP20. En cas d'utilisation du kit de protection, l'unité IP20 est améliorée de manière à respecter la protection IP21/4X top/TYPE 1.

La protection IP4X peut s'appliquer à toutes les variantes IP20 FC 30X standards.

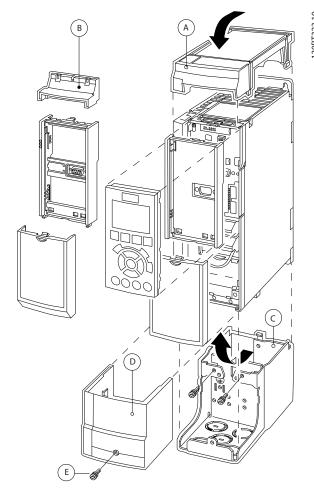


Illustration 11.23 Protection de type A2

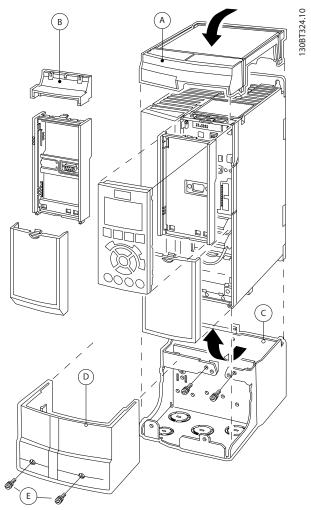


Illustration 11.24 Protection de type A3

Α	Couvercle supérieur
В	Bord
С	Base
D	Couvercle inférieur
Е	Vis

Tableau 11.12 Légende de l'Illustration 11.23 et de l'Illustration 11.24

Placer le couvercle supérieur comme illustré. Si une option A ou B est utilisée, le bord doit recouvrir l'entrée supérieure. Placer la base C au bas du variateur de fréquence et utiliser les brides présentes dans le sac d'accessoires pour attacher correctement les câbles.

Orifices pour presse-étoupes :

Taille A2: 2xM25 et 3xM32Taille A3: 3xM25 et 3xM32

130BT620.12

130BT621.12

Tuna da nuataction	Hauteur A Largeur B		Profondeur C*
Type de protection	[mm]	[mm]	[mm]
A2	372	90	205
A3	372	130	205
B3	475	165	249
B4	670	255	246
C3	755	329	337
C4	950	391	337

Tableau 11.13 Dimensions

* Si l'option A/B est utilisée, la profondeur augmente (voir section chapitre 8.2.1 Encombrement pour plus de détails).

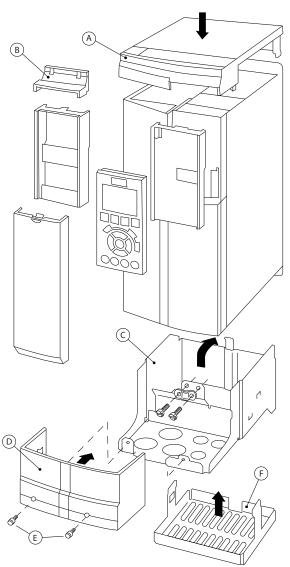


Illustration 11.25 Protection de type B3

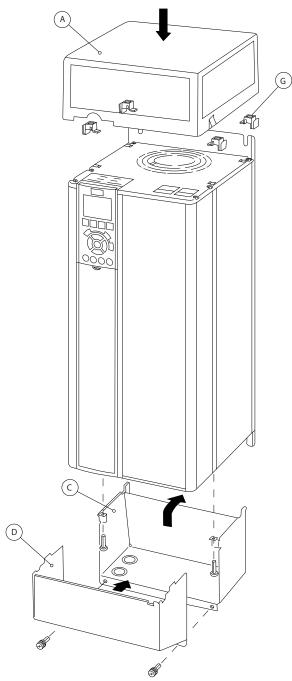


Illustration 11.26 Protections de types B4, C3, C4

Α	Couvercle supérieur
В	Bord
С	Base
D	Couvercle inférieur
Ε	Vis
F	Protection du ventilateur
G	Fixation supérieure

Tableau 11.14 Légende de l'Illustration 11.25 et de l'Illustration 11.25

Lorsqu'un module d'option A et/ou B est utilisé, le bord (B) doit être fixé sur le couvercle supérieur (A).

AVIS!

Le montage côte à côte n'est pas possible lorsque l'on utilise le *Kit de protection IP21/IP4X/TYPE 1*.

11.4.7 Kit de montage externe pour LCP

Le LCP peut être déplacé vers l'avant d'une armoire à l'aide du kit de montage externe. La protection est IP66. Les vis de fixation doivent être serrées à un couple max. d'1 Nm.

La protection LCP est classée IP66

Protection	avant, IP66
Longueur de câble max. entre et unité	3 m
Norme de communication	RS-485

Tableau 11.15 Caractéristiques techniques

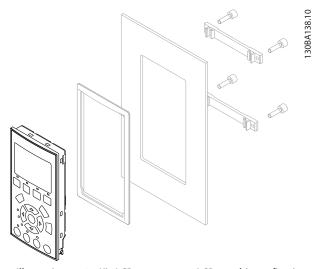


Illustration 11.27 Kit LCP comprenant LCP graphique, fixations, câble de 3 m et joint

Numéro de commande 130B1113

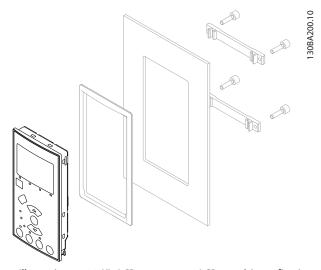
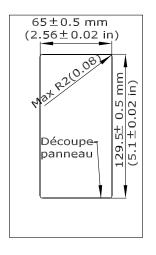
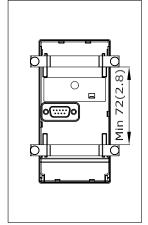




Illustration 11.28 Kit LCP comprenant LCP numérique, fixations et joint

Numéro de commande 130B1114

130BA139.13

Illustration 11.29 Dimensions

11.4.8 Support de fixation pour protections de types A5, B1, B2, C1 et C2

Étape 1

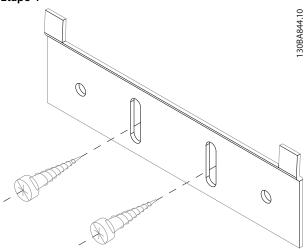
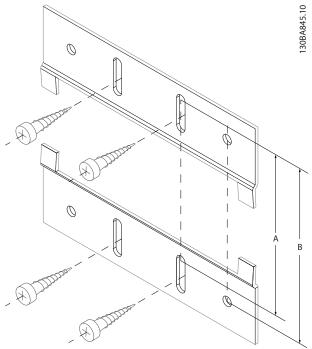



Illustration 11.30 Support inférieur

Illustration 11.31 Support supérieur

Positionner le support inférieur et le fixer à l'aide des vis. Ne pas serrer totalement les vis car cela rendrait difficile le montage du variateur de fréquence.

Étape 2

Mesurer la distance A ou B et positionner le support supérieur mais ne pas le serrer. Voir les dimensions dans le *Tableau 11.16.*

Protection	IP	A [mm]	B [mm]	Numéro de commande
A5	55/66	480	495	130B1080
B1	21/55/66	535	550	130B1081
B2	21/55/66	705	720	130B1082
В3	21/55/66	730	745	130B1083
B4	21/55/66	820	835	130B1084

Tableau 11.16 Détails

Étape 3

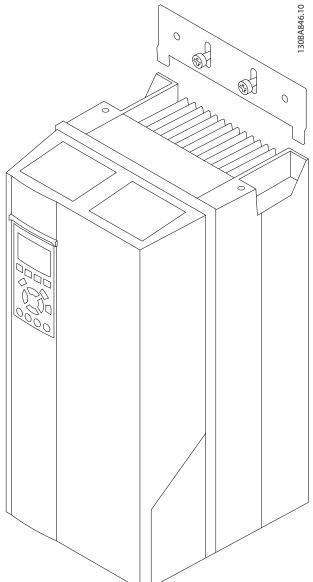


Illustration 11.32 Positionnement

Placer le variateur de fréquence sur le support inférieur, soulever le support supérieur. Lorsque le variateur de fréquence est en place, abaisser le support supérieur.

Étape 4

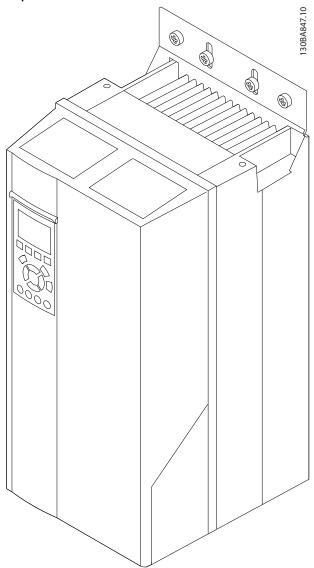
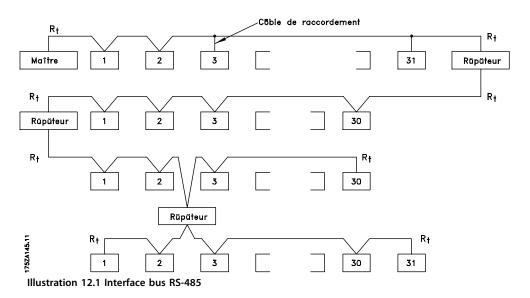


Illustration 11.33 Serrage des vis

Serrer ensuite les vis. Pour plus de sécurité, percer et installer les vis dans tous les trous.


12 Installation et configuration de l'interface RS-485

12.1 Installation et configuration

12.1.1 Vue d'ensemble

Le RS-485 est une interface de bus à deux fils compatible avec une topologie de réseau multipoints, c.-à-d. que des nœuds peuvent être connectés comme un bus ou via des câbles de dérivation depuis un tronçon de ligne commun. Un total de 32 nœuds peuvent être connectés à un segment de réseau.

Les répéteurs divisent les segments de réseaux (voir l'Illustration 12.1).

AVIS!

Chaque répéteur fonctionne comme un nœud au sein du segment sur lequel il est installé. Chaque nœud connecté au sein d'un réseau donné doit disposer d'une adresse de nœud unique pour tous les segments.

Terminer chaque segment aux deux extrémités, à l'aide du commutateur de terminaison (S801) du variateur de fréquence ou d'un réseau de résistances de terminaison polarisé. Utiliser toujours un câble blindé à paire torsadée (STP) pour le câblage du bus et suivre les règles habituelles en matière d'installation.

Il est important de disposer d'une mise à la terre de faible impédance du blindage à chaque nœud, y compris à hautes fréquences. Relier alors une grande surface du blindage à la terre, par exemple à l'aide d'un étrier de serrage ou d'un presse-étoupe conducteur. Il peut être nécessaire d'appliquer des câbles d'égalisation de potentiel pour maintenir le même potentiel de terre dans tout le réseau, en particulier dans les installations comportant des câbles longs.

Pour éviter toute disparité d'impédance, utiliser toujours le même type de câble dans l'ensemble du réseau. Lors du raccordement d'un moteur au variateur de fréquence, utiliser toujours un câble de moteur blindé.

Câble	Paire torsadée blindée (STP)
Impédance $[\Omega]$	120
Longueur de câble [m]	1 200 max. (y compris les câbles de dérivation)
	500 max. de station à station

Tableau 12.1 Câble : spécifications

12.2 Raccordement du réseau

Un ou plusieurs variateurs de fréquence peuvent être raccordés à un contrôleur (ou maître) à l'aide de l'interface normalisée RS-485. La borne 68 est raccordée au signal P (TX+, RX+) tandis que la borne 69 est raccordée au signal N (TX-, RX-). Voir les dessins au *chapitre 3.5 Schéma de câblage*.

Utiliser des liaisons parallèles pour raccorder plusieurs variateurs de fréquence au même maître.

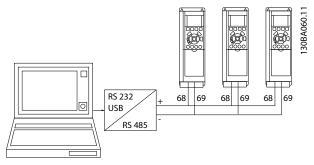


Illustration 12.2 Connexions parallèles

Afin d'éviter des courants d'égalisation de potentiel dans le blindage, relier celui-ci à la terre via la borne 61 connectée au châssis par une liaison RC.

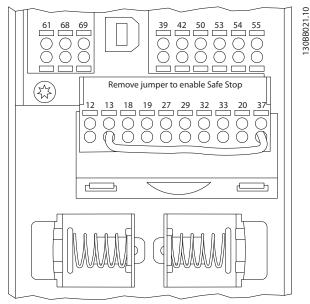


Illustration 12.3 Bornes de la carte de commande

12.3 Terminaison du bus

Le bus RS-485 doit être terminé par un réseau de résistances à chaque extrémité. À cette fin, placer le commutateur S801 de la carte de commande sur ON.

Le protocole de communication doit être réglé au par. 8-30 Protocole.

12.4 Installation et configuration de l'interface RS-485

12.4.1 Précautions CEM

Les précautions CEM suivantes sont recommandées pour assurer une exploitation sans interférence du réseau RS-485.

Respecter les réglementations nationales et locales en vigueur, par exemple à l'égard de la protection par mise à la terre. Maintenir le câble de communication RS-485 à l'écart des câbles du moteur et de résistance de freinage, afin d'éviter une nuisance réciproque des bruits liés aux hautes fréquences. Normalement, une distance de 200 mm (8 pouces) est suffisante, mais il est recommandé de garder la plus grande distance possible, notamment en cas d'installation de câbles en parallèle sur de grandes distances. Si le câble RS-485 doit croiser un câble de moteur et de résistance de freinage, il doit le croiser suivant un angle de 90°.

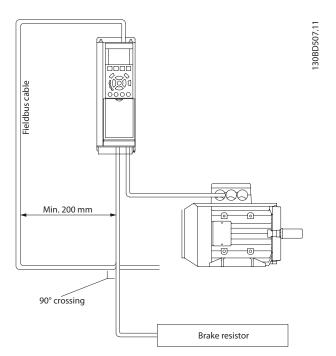


Illustration 12.4 Passage des câbles

12.5 Vue d'ensemble du protocole FC

Le protocole FC, également appelé bus FC ou bus standard, est le bus de terrain standard de Danfoss. Il définit une technique d'accès selon le principe maître-suiveur pour les communications via un bus série. Un maître et un maximum de 126 suiveurs peuvent être raccordés au bus. Le maître sélectionne chaque suiveur grâce à un caractère d'adresse dans le télégramme. Un suiveur ne peut jamais émettre sans y avoir été autorisé au préalable, et le transfert direct de messages entre les différents suiveurs n'est pas possible. Les communications ont lieu en mode semi-duplex.

La fonction du maître ne peut pas être transférée vers un autre nœud (système à maître unique).

La couche physique est la RS-485, qui utilise le port RS-485 intégré au variateur de fréquence. Le protocole FC prend en charge différents formats de télégramme :

- Un format court de 8 octets pour les données de process.
- Un format long de 16 octets qui comporte également un canal de paramètres.
- Un format utilisé pour les textes.

12.6 Configuration du réseau

12.6.1 Configuration du variateur de fréquence

Définir les paramètres suivants pour activer le protocole FC du variateur de fréquence.

Numéro du paramètre	Réglage
8-30 Protocole	FC
8-31 Adresse	1-126
8-32 Vit. Trans. port FC	2400-115200
8-33 Parité/bits arrêt	Parité à nombre pair, 1 bit d'arrêt
	(défaut)

Tableau 12.2 Paramètres du protocole FC

12.7 Structure des messages du protocole FC

12.7.1 Contenu d'un caractère (octet)

Chaque caractère transmis commence par un bit de départ. Ensuite, 8 bits de données, correspondant à un octet, sont transmis. Chaque caractère est sécurisé par un bit de parité. Ce bit est réglé sur « 1 » lorsqu'il atteint la parité. La parité est atteinte en présence d'un nombre égal de 1 s dans les 8 bits de données et le bit de parité au total. Le caractère se termine par un bit d'arrêt et se compose donc au total de 11 bits.

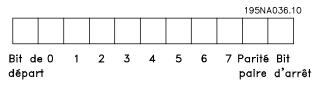


Illustration 12.5 Contenu d'un caractère

12.7.2 Structure du télégramme

Chaque télégramme présente la structure suivante :

- 1. Caractère de départ (STX)=02 Hex
- 2. Un octet indiquant la longueur du télégramme (LGE)
- Un octet indiquant l'adresse (ADR) du variateur de fréquence

Viennent ensuite plusieurs octets de données (nombre variable, dépend du type de télégramme).

Un octet de contrôle des données (BCC) termine le télégramme.



Illustration 12.6 Structure du télégramme

12.7.3 Longueur du télégramme (LGE)

La longueur du télégramme comprend le nombre d'octets de données auquel s'ajoutent l'octet d'adresse ADR et l'octet de contrôle des données BCC.

4 octets de données	LGE = 4 + 1 + 1 = 6 octets
12 octets de données	LGE = 12 + 1 + 1 = 14 octets
Télégrammes contenant des	10 ¹⁾ + n octets
textes	

Tableau 12.3 Longueur des télégrammes

¹⁾ 10 correspond aux caractères fixes tandis que « n » est variable (dépend de la longueur du texte).

12.7.4 Adresse (ADR) du variateur de fréquence

Deux formats d'adresse différents sont utilisés. La plage d'adresse du variateur est soit de 1-31 soit de 1-126.

1. Format d'adresse 1-31 :

Bit 7 = 0 (format adresse 1-31 actif)

Bit 6 non utilisé

Bit 5 = 1: diffusion, les bits d'adresse (0-4) ne sont pas utilisés

sont pas utilises

Bit 5 = 0: pas de diffusion

Bit 0-4 = adresse du variateur de fréquence 1-31

2. Format d'adresse 1-126 :

Bit 7 = 1 (format d'adresse 1-126 actif)

Bit 0-6 = adresse du variateur de fréquence 1-126

Bit 0-6 = 0 diffusion

Le suiveur renvoie l'octet d'adresse sans modification dans le télégramme de réponse au maître.

12.7.5 Octet de contrôle des données (BCC)

La somme de contrôle est calculée comme une fonction XOR. Avant de recevoir le premier octet du télégramme, la somme de contrôle calculée est égale à 0.

12.7.6 Champ de données

La construction de blocs de données dépend du type de télégramme. Il existe trois types de télégrammes et le type est valable aussi bien pour le télégramme de contrôle (maître⇒suiveur) que pour le télégramme de réponse (suiveur⇒maître).

Voici les 3 types de télégramme :

Bloc de process (PCD)

Un PCD est composé d'un bloc de données de 4 octets (2 mots) et comprend :

- Mot de contrôle et valeur de référence (du maître à l'esclave)
- Mot d'état et fréquence de sortie actuelle (de l'esclave au maître)

r				
STX LGE ADR	PCD1	PCD2	BCC	
			-	

Illustration 12.7 Bloc de process

Bloc de paramètres

Un bloc de paramètres est utilisé pour le transfert de paramètres entre le maître et le suiveur. Le bloc de données est composé de 12 octets (6 mots) et contient également le bloc de process.

130BA2/1.10

STX LGE ADR	PKE	IND	PWEhaut	PWEbas	PCD1	PCD2	BCC
	–		i — Illuul	– pus	,		

Illustration 12.8 Bloc de paramètres

Bloc de texte

Un bloc de texte est utilisé pour lire ou écrire des textes via le bloc de données.

Illustration 12.9 Bloc de texte

12.7.7 Champ PKE

Le champ PKE contient deux sous-champs : ordre et réponse de paramètres AK et numéro de paramètres PNU :

130BA268.10

PKE IND PWEhaut PWEbas

AK PNU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Illustration 12.10 Champ PKE

Les bits 12 à 15 sont utilisés pour le transfert d'ordres de paramètres du maître au suiveur ainsi que pour la réponse traitée par le suiveur et renvoyée au maître.

Bit n°				Ordre de paramètre
15	14	13	12	
0	0	0	0	Pas d'ordre
0	0	0	1	Lire valeur du paramètre
0	0	1	0	Écrire valeur du paramètre en RAM (mot)
0	0	1	1	Écrire valeur du paramètre en RAM (mot
				double)
1	1	0	1	Écrire valeur du paramètre en RAM et
				EEPROM (mot double)
1	1	1	0	Écrire valeur du paramètre en RAM et
				EEPROM (mot)
1	1	1	1	Lire/écrire texte

Tableau 12.4 Ordres de paramètres Maître ⇒ Suiveur

Bit n°				Réponse
15	14	13	12	
0	0	0	0	Pas de réponse
0	0	0	1	Valeur du paramètre transmise (mot)
0	0	1	0	Valeur du paramètre transmise (mot
				double)
0	1	1	1	Ordre impossible à exécuter
1	1	1	1	Texte transmis

Tableau 12.5 Réponse Suiveur⇒ Maître

S'il est impossible d'exécuter l'ordre, le suiveur envoie cette réponse :

0111 Ordre impossible à exécuter

- et publie le message d'erreur suivant dans la valeur de paramètre (PWE) :

PWE bas	Message d'erreur
(Hex)	
0	Le numéro de paramètre utilisé n'existe pas
1	Aucun accès en écriture au paramètre défini
2	La valeur des données dépasse les limites du
	paramètre
3	L'indice utilisé n'existe pas
4	Le paramètre n'est pas de type tableau
5	Le type de données ne correspond pas au
	paramètre défini
11	La modification des données dans le paramètre
	défini n'est pas possible dans l'état actuel du
	variateur de fréquence. Certains paramètres ne
	peuvent être modifiés qu'avec le moteur à l'arrêt.
82	Aucun accès du bus au paramètre défini
83	La modification des données est impossible car les
	réglages d'usine ont été sélectionnés

Tableau 12.6 Rapports d'erreur des valeurs de paramètre

12.7.8 Numéro de paramètre (PNU)

Les bits n° 0 à 11 sont utilisés pour le transfert des numéros de paramètre. La fonction du paramètre concerné est définie dans la description des paramètres dans le Guide de programmation.

12.7.9 Indice (IND)

L'indice est utilisé avec le numéro de paramètre pour l'accès lecture/écriture aux paramètres dotés d'un indice, p. ex. le par. 15-30 Journal alarme : code. L'indice est composé de 2 octets, un octet de poids faible et un octet de poids fort.

Seul l'octet de poids faible est utilisé comme un indice.

Danfoss

12

12.7.10 Valeur du paramètre (PWE)

Le bloc valeur du paramètre se compose de 2 mots (4 octets) et la valeur dépend de l'ordre donné (AK). Le maître exige une valeur de paramètre lorsque le bloc PWE ne contient aucune valeur. Pour modifier une valeur de paramètre (écriture), écrire la nouvelle valeur dans le bloc PWE et l'envoyer du maître au suiveur.

Lorsqu'un suiveur répond à une demande de paramètre (ordre de lecture), la valeur actuelle du paramètre du bloc PWE est transmise et renvoyée au maître. Si un paramètre ne contient pas de valeur numérique, mais plusieurs options de données, par exemple 0-01 Langue [0] Anglais et [4] Danois, choisir la valeur de données en saisissant la valeur dans le bloc PWE. Voir Exemple - Choix d'une valeur de donnée. La communication série est uniquement capable de lire les paramètres contenant des données de type 9 (chaîne de texte).

Les par. 15-40 Type. FC à 15-53 N° série carte puissance contiennent le type de données 9.

À titre d'exemple, le par. 15-40 Type. FC permet de lire l'unité et la plage de tension secteur. Lorsqu'une séquence de texte est transmise (lue), la longueur du télégramme est variable et les textes présentent des longueurs variables. La longueur du télégramme est indiquée dans le 2e octet du télégramme, LGE. Lors d'un transfert de texte, le caractère d'indice indique s'il s'agit d'un ordre de lecture ou d'écriture.

Afin de pouvoir lire un texte via le bloc PWE, régler l'ordre de paramètre (AK) sur « F » Hex. L'octet haut du caractère d'indice doit être « 4 ».

Certains paramètres contiennent du texte qui peut être écrit via le bus série. Pour écrire un texte via le bloc PWE, régler l'ordre de paramètre (AK) sur « F » Hex. L'octet haut du caractère d'indice doit être « 5 ».

		Pk	(E	IN	ID	PWE _{hout}	PWE _{bas}	
Lecture t	exte	Fx	хх	04	00			
Ecriture 1	exte	Fx	ж	05	00			
	•						12004278 11	

Illustration 12.11 Texte via le bloc PWE

12.7.11 Types de données pris en charge

Non signé signifie que le télégramme ne comporte pas de signe.

Types de données	Description
3	Nombre entier 16 bits
4	Nombre entier 32 bits
5	Non signé 8 bits
6	Non signé 16 bits
7	Non signé 32 bits
9	Séquence de texte
10	Chaîne d'octets
13	Différence de temps
33	Réservé
35	Séquence de bits

Tableau 12.7 Types de données pris en charge

12.7.12 Conversion

Le chapitre Réglage d'usine montre les caractéristiques de chaque paramètre. Les valeurs de paramètre ne sont transmises que sous la forme de nombres entiers. Les facteurs de conversion sont donc utilisés pour transmettre des nombres décimaux.

Le par. 4-12 Vitesse moteur limite basse [Hz] a un facteur de conversion de 0,1. Pour prérégler la fréquence minimale sur 10 Hz, transmettre la valeur 100. Un facteur de conversion de 0,1 signifie que la valeur transmise est multipliée par 0,1. La valeur 100 est donc lue sous la forme 10.0.

30BA092.10

Exemples:

0 s ⇒ indice de conversion 0 0,00 s ⇒ indice de conversion -2 0 ms ⇒ indice de conversion -3 0,00 ms ⇒ indice de conversion -5

Indice de conversion	Facteur de conversion
100	
75	
74	
67	
6	1000000
5	100000
4	10000
3	1000
2	100
1	10
0	1
-1	0,1
-2	0,01
-3	0,001
-4	0,0001
-5	0,00001
-6	0,000001
-7	0,000001

Tableau 12.8 Tableau de conversion

12.7.13 Mots de process (PCD)

Le bloc de mots de process est divisé en deux blocs, chacun de 16 bits, qui apparaissent toujours dans l'ordre indiqué.

PCD 1	PCD 2
Télégramme de contrôle (maître⇒mot de	Référence-valeur
contrôle suiveur)	
Télégramme de contrôle (suiveur⇒maître)	Fréquence de
mot d'état	sortie actuelle

Tableau 12.9 Mots de process (PCD)

12.8 Exemples

12.8.1 Écriture d'une valeur de paramètre

Changer le par. 4-14 Vitesse moteur limite haute [Hz] sur 100 Hz.

Écrire les données en EEPROM.

PKE = E19E Hex - Écriture d'un mot unique au par. 4-14 Vitesse moteur limite haute [Hz]

IND = 0000 Hex

PWEHAUT = 0000 Hex

PWEBAS = 03E8 Hex - Valeur de données 1000 correspondant à 100 Hz, voir *chapitre 12.7.12 Conversion*.

Le télégramme présente l'apparence suivante :

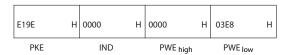


Illustration 12.12 Écrire les données en EEPROM

AVIS!

4-14 Vitesse moteur limite haute [Hz] est un mot unique, et l'ordre de paramètre pour l'écriture dans l'EEPROM est « E ». Le numéro de paramètre 4-14 est 19E au format hexadécimal.

La réponse du suiveur au maître est :

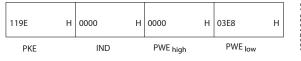


Illustration 12.13 Réponse du suiveur

12.8.2 Lecture d'une valeur de paramètre

Lire la valeur au par. 3-41 Temps d'accél. rampe 1

PKE = 1155 Hex - Lire la valeur au par. 3-41 Temps d'accél. rampe 1

IND = 0000 Hex

PWEHAUT = 0000 Hex

PWELOW = 0000 Hex

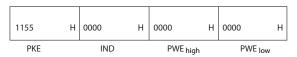


Illustration 12.14 Valeur de paramètre

Si la valeur au par. 3-41 Temps d'accél. rampe 1 est égale à 10 s, la réponse du suiveur au maître est :

1155 H 0000 H 0000 H 03E8 H

PKE IND PWE_{high} PWE_{low}

Illustration 12.15 Réponse du suiveur

3E8 Hex correspond à 1000 au format décimal. L'indice de conversion du par. 3-41 Temps d'accél. rampe 1 est -2, c.-àd. 0,01.

Le par. 3-41 Temps d'accél. rampe 1 est du type Non signé 32 bits.

12.9 Vue d'ensemble du Modbus RTU

12.9.1 Hypothèses de départ

Danfoss part du principe que le contrôleur installé prend en charge les interfaces mentionnées dans ce document et que toutes les exigences et restrictions concernant le contrôleur et le variateur de fréquence sont strictement respectées.

12.9.2 Ce que l'utilisateur doit déjà savoir

Le Modbus RTU intégré (terminal distant) est conçu pour communiquer avec n'importe quel contrôleur prenant en charge les interfaces définies dans ce document. Il est entendu que l'utilisateur connaît parfaitement les capacités et les limites du contrôleur.

12.9.3 Vue d'ensemble du Modbus RTU

L'aperçu sur le Modbus RTU décrit le procédé qu'utilise un contrôleur pour accéder à un autre dispositif, indépendamment du type de réseau de communication physique. Cela inclut la manière dont le Modbus RTU répond aux demandes d'un autre dispositif et comment les erreurs sont détectées et signalées. Il établit également un format commun pour la structure et le contenu des champs de message.

Pendant les communications sur un réseau Modbus RTU, le protocole :

- détermine la façon dont chaque contrôleur apprend l'adresse de son dispositif
- détermine la façon dont il reconnaît un message qui lui est adressé
- détermine les actions à entreprendre
- extrait les données et les informations contenues dans le message.

Si une réponse est nécessaire, le contrôleur élabore et envoie le message de réponse.

Les contrôleurs communiquent à l'aide d'une technique maître-suiveur dans lequel seul le maître peut initier des transactions (appelées requêtes). Les suiveurs répondent en fournissant au maître les données demandées ou en effectuant l'action demandée dans la requête.

Le maître peut s'adresser à un suiveur en particulier ou transmettre un message à diffusion générale à tous les suiveurs. Les suiveurs renvoient une réponse aux requêtes qui leur sont adressées individuellement. Aucune réponse n'est renvoyée aux requêtes à diffusion générale du maître. Le protocole Modbus RTU établit le format de la requête du maître en y indiquant l'adresse du dispositif (ou de diffusion générale), un code de fonction définissant l'action demandée, toute donnée à envoyer et un champ de contrôle d'erreur. Le message de réponse du suiveur est également construit en utilisant le protocole Modbus. Il contient des champs confirmant l'action entreprise, toute donnée à renvoyer et un champ de contrôle d'erreur. Si une erreur se produit lors de la réception du message ou si le suiveur est incapable d'effectuer l'action demandée, ce dernier élabore et renvoie un message d'erreur ou bien une temporisation se produit.

12.9.4 Variateur de fréquence avec Modbus

Le variateur de fréquence communique au format Modbus RTU sur l'interface intégrée RS-485. Le Modbus RTU offre l'accès au mot de contrôle et à la référence du bus du variateur de fréquence.

Le mot de contrôle permet au maître Modbus de contrôler plusieurs fonctions importantes du variateur de fréquence.

- Démarrage
- Arrêt du variateur de fréquence de plusieurs façons :
 - Arrêt en roue libre
 - Arrêt rapide
 - Arrêt avec freinage CC
 - Arrêt normal (rampe)
- Reset après une coupure
- Fonctionnement à plusieurs vitesses prédéfinies
- Fonctionnement en sens inverse
- Changement du process actif
- Contrôle du relais intégré du variateur de fréquence

La référence du bus est généralement utilisée pour commander la vitesse. Il est également possible d'accéder aux paramètres, de lire leurs valeurs et le cas échéant, d'écrire leurs valeurs. Cela permet de disposer d'une gamme d'options de contrôle, comprenant le contrôle du point de consigne du variateur de fréquence lorsque le régulateur PI interne est utilisé.

12.10 Configuration du réseau

Pour activer le Modbus RTU sur le variateur de fréquence, régler les paramètres suivants :

Paramètre	Réglage
8-30 Protocole	Modbus RTU
8-31 Adresse	1-247
8-32 Vit. transmission	2400-115200
8-33 Parité/bits arrêt	Parité à nombre pair, 1 bit d'arrêt
	(défaut)

Tableau 12.10 Paramètres du Modbus RTU

12.11 Structure des messages du Modbus RTU

12.11.1 Variateur de fréquence avec Modbus RTU

Les contrôleurs sont configurés pour communiquer sur le réseau Modbus à l'aide du mode RTU (terminal distant) ; chaque octet d'un message contient 2 caractères de 4 bits hexadécimaux. Le format de chaque octet est indiqué dans le *Tableau 12.11*.

Bit de déma-	Octet de données				Arrêt/ parité	Arrêt				
rrage										

Tableau 12.11 Format de chaque octet

Système de	Binaire 8 bits, hexadécimal 0-9, A-F. Deux
codage	caractères hexadécimaux contenus dans
	chaque champ à 8 bits du message
Bits par octet	1 bit de démarrage
	8 bits de données, bit de plus faible poids
	envoyé en premier
	1 bit pour parité paire/impaire ; pas de bit
	en l'absence de parité
	1 bit d'arrêt si la parité est utilisée ; 2 bits
	en l'absence de parité
Champ de contrôle	Contrôle de redondance cyclique (CRC)
d'erreur	

12.11.2 Structure des messages Modbus RTU

Le dispositif de transmission place un message Modbus RTU dans un cadre avec un début connu et un point final. Cela permet aux dispositifs de réception de commencer au début du message, de lire la portion d'adresse, de déterminer à quel dispositif il s'adresse (ou tous les dispositifs si le message est à diffusion générale) et de reconnaître la fin du message. Les messages partiaux sont détectés et des erreurs apparaissent. Les caractères pour la transmission doivent être au format hexadécimal 00 à FF dans chaque champ. Le variateur de fréquence surveille en permanence le bus du réseau, même pendant les intervalles silencieux. Lorsqu'un variateur de fréquence ou un dispositif reçoit le premier champ (le champ d'adresse), il le décode pour déterminer à quel dispositif le message s'adresse. Les messages du Modbus RTU adressés à zéro sont les messages à diffusion générale. Aucune réponse n'est permise pour les messages à diffusion générale. Une structure de message typique est présentée dans le Tableau 12.12.

Démar-	Adresse	Fonction	Données	Contrôle	Fin
rage				CRC	
T1-T2-T3-	8 bits	8 bits	N x 8	16 bits	T1-T2-T3-
T4			bits		T4

Tableau 12.12 Structure typique des messages du Modbus RTU

12.11.3 Champ démarrage/arrêt

Les messages commencent avec une période silencieuse d'au moins 3,5 intervalles de caractère. Ceci est effectué grâce à un multiple d'intervalles de caractère en fonction de la vitesse de transmission du réseau sélectionnée (indiqué comme démarrage T1-T2-T3-T4). Le premier champ transmis est l'adresse du dispositif. Après transfert du dernier caractère, une période similaire d'au moins 3,5 intervalles de caractère marque la fin du message. Un nouveau message peut commencer après cette période. La structure entière du message doit être transmise comme une suite ininterrompue. Si une période silencieuse de plus de 1,5 intervalle de caractère se produit avant achèvement de la structure, le dispositif de réception élimine le message incomplet et considère que le prochain octet est le champ d'adresse d'un nouveau message. De même, si un nouveau message commence avant 3,5 intervalles de caractère après un message, le dispositif de réception le considère comme la suite du message précédent. Cela entraîne une temporisation (pas de réponse du suiveur), puisque la valeur du champ CRC final n'est pas valide pour les messages combinés.

12.11.4 Champ d'adresse

Le champ d'adresse d'une structure de message contient 8 bits. Les adresses des dispositifs suiveurs valides sont comprises dans une plage de 0 à 247 décimal. Chaque dispositif suiveur dispose d'une adresse dans la plage de 1 à 247 (0 est réservé au mode de diffusion générale, que tous les suiveurs reconnaissent). Un maître s'adresse à un suiveur en plaçant l'adresse du suiveur dans le champ d'adresse du message. Lorsque le suiveur envoie sa réponse, il place sa propre adresse dans ce champ d'adresse pour faire savoir au maître quel suiveur est en train de répondre.

12.11.5 Champ de fonction

Le champ de fonction d'une structure de message contient 8 bits. Les codes valides figurent dans une plage comprise entre 1 et FF. Les champs de fonction sont utilisés pour le transfert de paramètres entre le maître et le suiveur. Lorsqu'un message est envoyé par un maître à un dispositif suiveur, le champ de code de fonction indique au suiveur le type d'action à effectuer. Lorsque le suiveur répond au maître, il utilise le champ de code de fonction pour indiquer soit une réponse normale (sans erreur) soit le type d'erreur survenue (appelée réponse d'exception). Pour une réponse normale, le suiveur renvoie simplement le code de fonction d'origine. Pour une réponse d'exception, le suiveur renvoie un code équivalent au code de fonction d'origine avec son bit de plus fort poids réglé sur « 1 » logique. De plus, le suiveur place un code unique dans le champ de données du message de réponse. Cela indique au maître le type d'erreur survenue ou la raison de l'exception. Se reporter également au chapitre 12.11.10 Codes de fonction pris en charge par le Modbus RTU et au chapitre 12.11.11 Codes d'exceptions Modbus.

12.11.6 Champ de données

Le champ de données est construit en utilisant des ensembles de deux chiffres hexadécimaux, dans la plage de 00 à FF au format hexadécimal. Ceux-ci sont composés d'un caractère RTU. Le champ de données des messages envoyés par le maître au dispositif suiveur contient des informations complémentaires que le suiveur doit utiliser pour effectuer l'action définie par le code de fonction. Cela peut inclure des éléments tels que des adresses de bobines ou de registres, la quantité d'éléments à manier et le comptage des octets de données réels dans le champ.

12.11.7 Champ de contrôle CRC

Les messages comportent un champ de contrôle d'erreur, fonctionnant sur la base d'une méthode de contrôle de redondance cyclique (CRC). Le champ CRC vérifie le contenu du message entier. Il s'applique indépendamment de la méthode de contrôle de la parité utilisée pour chaque caractère du message. La valeur CRC est calculée par le dispositif de transmission, qui joint le CRC sous la forme du dernier champ du message. Le dispositif de réception recalcule un CRC lors de la réception du message et compare la valeur calculée à la valeur réelle reçue dans le champ CRC. Si les deux valeurs ne sont pas égales, une temporisation du temps du bus se produit. Le champ de contrôle d'erreur contient une valeur binaire de 16 bits mise en œuvre sous la forme de deux octets de 8 bits. Ensuite, l'octet de poids faible du champ est joint en premier, suivi de l'octet de poids fort. L'octet de poids fort du CRC est le dernier octet envoyé dans le message.

12.11.8 Adresse de registre des bobines

En Modbus, toutes les données sont organisées dans des registres de bobines et de maintien. Les bobines contiennent un seul bit, tandis que les registres de maintien contiennent un mot à 2 octets (c.-à-d. 16 bits). Toutes les adresses de données des messages du Modbus sont référencées sur zéro. La première occurrence d'un élément de données est adressée comme un élément zéro. Par exemple : la bobine connue comme bobine 1 dans un contrôleur programmable est adressée comme bobine 0000 dans le champ d'adresse de données d'un message du Modbus. La bobine 127 décimal est adressée comme bobine 007EHEX (126 décimal).

Le registre de maintien 40001 est adressé comme registre 0000 dans le champ d'adresse de données du message. Le champ de code de fonction spécifie déjà une exploitation « registre de maintien ». La référence 4XXXX est donc implicite. Le registre de maintien 40108 est adressé comme registre 006BHEX (107 décimal).

Numéro	Description	Sens du signal
de	•	
bobine		
1-16	Mot de contrôle du variateur de	Maître au
	fréquence	suiveur
17-32	Référence de vitesse ou de point	Maître au
	de consigne du variateur Plage 0x0	suiveur
	- 0xFFFF (-200 % ~200 %)	
33-48	Mot d'état du variateur de	Du suiveur au
	fréquence (voir le <i>Tableau 12.15</i>)	maître
49-64	Mode boucle ouverte : fréquence	Du suiveur au
	de sortie du variateur de fréquence	maître
	Mode boucle fermée : signal de	
	retour du variateur de fréquence	
65	Contrôle d'écriture du paramètre	Maître au
	(du maître au suiveur)	suiveur
	0 Les modifications de paramètres	
	= sont écrites dans la RAM du	
	variateur de fréquence	
	1 Les modifications de paramètres	
	= sont écrites dans la RAM et	
	l'EEPROM du variateur de	
	fréquence	
66-65536	Réservé	

Tableau 12.13 Descriptions de la bobine

Bobine	0	1	
01	Référence prédéfinie LSB		
02	Référence prédéfinie MS	В	
03	Freinage CC	Pas de freinage CC	
04	Arrêt en roue libre	Pas d'arrêt en roue libre	
05	Arrêt rapide	Pas d'arrêt rapide	
06	Gel fréquence	Pas de gel fréquence	
07	Arrêt rampe	Démarrage	
08	Pas de reset	Reset	
09	Pas de jogging	Jogging	
10	Rampe 1	Rampe 2	
11	Données non valides	Données valides	
12	Relais 1 inactif	Relais 1 actif	
13	Relais 2 inactif	Relais 2 actif	
14	Process LSB		
15	Process MSB		
16	Pas d'inversion	Inversion	

Tableau 12.14 Mot de contrôle du variateur de fréquence (Profil FC)

Bobine	0	1
33	Commande non prête	Commande prête
34	Variateur de fréquence	Variateur de fréquence prêt
	non prêt	
35	Arrêt en roue libre	Arrêt de sécurité
36	Pas d'alarme	Alarme
37	Non utilisé	Non utilisé
38	Non utilisé	Non utilisé
39	Non utilisé	Non utilisé
40	Absence d'avertissement	Avertissement
41	Pas à référence	À référence
42	Mode Hand	Mode automatique
43	Hors plage de fréq.	Dans plage de fréq.
44	Arrêté	Fonctionne
45	Non utilisé	Non utilisé
46	Pas d'avertis. de tension	Avertissement de tension
47	Pas dans limite de courant	Limite de courant
48	Sans avertis. thermique	Avertis. thermiq.

Tableau 12.15 Mot d'état du variateur de fréquence (Profil FC)

Numéro de	Description
registre	
00001-00006	Réservé
00007	Dernier code d'erreur depuis une interface d'objet
	de données FC
80000	Réservé
00009	Indice de paramètres*
00010-00990	Groupe de paramètres 000 (paramètres 001 à 099)
01000-01990	Groupe de paramètres 100 (paramètres 100 à 199)
02000-02990	Groupe de paramètres 200 (paramètres 200 à 299)
03000-03990	Groupe de paramètres 300 (paramètres 300 à 399)
04000-04990	Groupe de paramètres 400 (paramètres 400 à 499)
49000-49990	Groupe de paramètres 4900 (paramètres 4900 à 4999)
50000	Données d'entrée : registre du mot de contrôle du variateur de fréquence (CTW)
50010	Données d'entrée : registre de référence du bus (REF)
50200	Données de sortie : registre du mot d'état du variateur de fréquence (STW)
50210	Données de sortie : registre de la valeur réelle principale du variateur (MAV)

Tableau 12.16 Registres de stockage

^{*} Sert à spécifier le numéro d'indice à utiliser lors de l'accès à un paramètre indexé.

12.11.9 Comment contrôler le variateur de fréquence

Ce chapitre décrit les codes pouvant être utilisés dans les champs de fonction et de données d'un message du Modbus RTU.

12.11.10 Codes de fonction pris en charge par le Modbus RTU

Le Modbus RTU prend en charge l'utilisation des codes de fonction suivants dans le champ de fonction d'un message.

Fonction	Code de fonction (hex)
Lecture bobines	1
Lecture registres de maintien	3
Écriture bobine unique	5
Écriture registre unique	6
Écriture bobines multiples	F
Écriture registres multiples	10
Obtention compteur événement	В
comm.	
Rapporter l'ID suiveur	11

Tableau 12.17 Codes de fonction

Fonction	Code de	Code de	Sous-fonction
	fonction	sous-	
		fonction	
Diagnostics	8	1	Redémarrer communi-
			cation
		2	Renvoyer registre de
			diagnostic
		10	Nettoyer compteurs et
			registre de diagnostic
		11	Renvoyer comptage
			message bus
		12	Renvoyer comptage erreur
			communication bus
		13	Renvoyer comptage erreur
			suiveur
		14	Renvoyer comptage
			message suiveur

Tableau 12.18 Codes de fonction

12.11.11 Codes d'exceptions Modbus

Pour plus d'informations sur la structure d'une réponse d'exception, se reporter au *chapitre 12.11.5 Champ de fonction*.

Code	Nom	Signification
1	Fonction non	Le code de fonction reçu dans la requête
	autorisée	ne correspond pas une action autorisée
		pour le serveur (ou suiveur). Cela peut
		venir du fait que le code de fonction n'est
		applicable qu'à des dispositifs plus récents
		et n'a pas été implémenté dans l'unité
		sélectionnée. Cela peut également
		signifier que le serveur (ou suiveur) est
		dans un état incorrect pour traiter une
		demande de ce type, par exemple parce
		qu'il n'est pas configuré pour renvoyer les
		valeurs du registre.
2	Adresse de	L'adresse de données reçue dans la
	données	requête n'est pas une adresse autorisée
	illégale	pour le serveur (ou suiveur). Plus spécifi-
		quement, la combinaison du numéro de
		référence et de la longueur du transfert
		n'est pas valide. Pour un contrôleur avec
		100 registres, une requête avec offset de
		96 et longueur de 4 peut réussir, une
		requête avec offset de 96 et longueur de
		5 génère l'exception 02.
3	Valeur de	Une valeur contenue dans le champ de
	données	données de la requête n'est pas autorisée
	illégale	pour le serveur (ou suiveur). Cela signale
		une erreur dans la structure du reste
		d'une requête complexe, p. ex. la
		longueur impliquée est incorrecte. Cela
		NE signifie PAS spécifiquement qu'un
		élément de données envoyé pour
		stockage dans un registre présente une
		valeur en dehors de l'attente du
		programme d'application, puisque le
		protocole Modbus n'a pas connaissance
		de la signification d'une valeur particulière
4	Éalana du	dans un registre particulier.
4	Échec du	Une erreur irréparable s'est produite alors
	dispositif	que le serveur (ou suiveur) tentait
	suiveur	d'effectuer l'action demandée.

Tableau 12.19 Codes d'exceptions Modbus

12.12 Comment accéder aux paramètres

12.12.1 Gestion des paramètres

Le PNU (numéro de paramètre) est traduit depuis l'adresse du registre contenue dans le message lecture ou écriture Modbus. Le numéro du paramètre est traduit vers le Modbus en tant que DÉCIMAL (10 x numéro de paramètre). Exemple : Affichage par. 3-12 Rattrap/ralentiss (16 bits) : Le registre de maintien 3120 conserve la valeur des paramètres. Une valeur de 1352 (décimale) signifie que le paramètre est réglé sur 12,52 %.

Affichage par. *3-14 Réf.prédéf.relative* (32 bits) : Les registres de maintien 3410 et 3411 conservent la valeur des paramètres. Une valeur de 11 300 (décimale) signifie que le paramètre est réglé sur 1 113,00.

Pour plus d'informations sur les paramètres, la taille et l'indice de conversion, consulter le guide de programmation correspondant.

12.12.2 Stockage des données

La bobine 65 décimal détermine si les données écrites sur le variateur de fréquence sont enregistrées sur l'EEPROM et sur la RAM (bobine 65 = 1) ou uniquement sur la RAM (bobine 65 = 0).

12.12.3 IND (Index)

Certains paramètres du variateur de fréquence sont des paramètres de tableau, par exemple 3-10 Réf.prédéfinie. Comme le Modbus ne prend pas en charge les tableaux dans les registres de maintien, le variateur de fréquence a réservé le registre de maintien 9 comme pointeur vers le tableau. Avant de lire ou d'écrire dans un paramètre de tableau, régler le registre de maintien 9. Le réglage du registre de maintien sur la valeur 2 entraîne le placement de la lecture/écriture suivante dans les paramètres de tableau de l'indice 2.

12.12.4 Blocs de texte

On accède aux paramètres stockés sous forme de chaînes de texte comme on le fait pour les autres paramètres. La taille maximum d'un bloc de texte est de 20 caractères. Si une demande de lecture d'un paramètre contient plus de caractères que n'en contient le paramètre, la réponse est tronquée. Si la demande de lecture d'un paramètre contient moins de caractères que n'en contient le paramètre, la réponse comporte des espaces.

12.12.5 Facteur de conversion

Les caractéristiques de chaque paramètre sont indiquées dans le chapitre réglages d'usine. Une valeur de paramètre ne pouvant être transmise que sous la forme d'un nombre entier, il faut utiliser un facteur de conversion pour transmettre des chiffres à décimales.

12.12.6 Valeurs de paramètre

Types de données standard

Les types de données standard sont int16, int32, uint8, uint16 et uint32. Ils sont stockés comme 4x registres (40001-4FFFF). Les paramètres sont lus à l'aide de la fonction 03HEX Lecture registres de maintien. Ils sont écrits à l'aide de la fonction 6HEX Prédéfinir registre unique pour 1 registre (16 bits) et de la fonction 10HEX Prédéfinir registres multiples pour 2 registres (32 bits). Les tailles lisibles vont de 1 registre (16 bits) à 10 registres (20 caractères).

Types de données non standard

Les types de données non standard sont des chaînes de texte et sont stockés comme registres 4x (40001–4FFFF). Les paramètres sont lus à l'aide de la fonction 03HEX Lecture registres de maintien et sont écrits à l'aide de la fonction 10HEX Prédéfinir registres multiples. Les tailles lisibles vont de 1 registre (2 caractères) à 10 registres (20 caractères).

12.13 Danfoss Profil de contrôle FC

12.13.1 Mot de contrôle conforme au Profil FC (8-10 Profil de ctrl = profil FC)

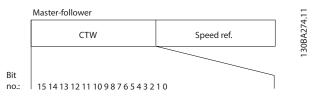


Illustration 12.16 Mot contrôle

Bit	Valeur de bit = 0	Valeur de bit = 1
00	Valeur de référence	Sélection externe lsb
01	Valeur de référence	Sélection externe msb
02	Freinage CC	Rampe
03	Roue libre	Pas de roue libre
04	Arrêt rapide	Rampe
05	Maintien fréquence de sortie	Utiliser rampe
06	Arrêt rampe	Démarrage
07	Pas de fonction	Reset
08	Pas de fonction	Jogging
09	Rampe 1	Rampe 2
10	Données non valides	Données valides
11	Pas de fonction	Relais 01 actif
12	Pas de fonction	Relais 02 actif
13	Configuration des paramètres	Sélection Isb
14	Configuration des paramètres	Sélection msb
15	Pas de fonction	Inverse

Tableau 12.20 Bits du mot de contrôle

Signification des bits de contrôle

Bits 00/01

Utiliser les bits 00 et 01 pour choisir entre les quatre valeurs de référence préprogrammées au par. 3-10 Réf.prédéfinie selon le Tableau 12.21 :

Valeur de réf.	Paramètre	Bit 01	Bit 00
programmée			
1	3-10 Réf.prédéfinie [0]	0	0
2	3-10 Réf.prédéfinie [1]	0	1
3	3-10 Réf.prédéfinie [2]	1	0
4	3-10 Réf.prédéfinie [3]	1	1

Tableau 12.21 Valeurs de référence

AVIS!

Faire une sélection au par. 8-56 Sélect. réf. par défaut afin d'établir la liaison entre les bits 00/01 et la fonction correspondante des entrées digitales.

Bit 02, Freinage CC

Bit 02 = « 0 » entraîne le freinage par injection de courant continu et l'arrêt. Le courant de freinage et la durée sont définis aux par. 2-01 Courant frein CC et 2-02 Temps frein CC.

Bit 02 =« 1» mène à la rampe.

Bit 03, Roue libre

Bit 03 = « 0 » : le variateur de fréquence « lâche » immédiatement le moteur (les transistors de sortie s'éteignent) et il s'arrête en roue libre.

Bit 03 = « 1 » : le variateur de fréquence lance le moteur si les autres conditions de démarrage sont remplies.

Faire une sélection au par. 8-50 Sélect.roue libre afin d'établir la liaison entre le bit 03 et la fonction correspondante d'une entrée digitale.

Bit 04, Arrêt rapide

Bit 04 = « 0 » : entraîne la vitesse du moteur à suivre la rampe de décélération rapide jusqu'à l'arrêt (réglé au par. 3-81 Temps rampe arrêt rapide).

Bit 05, Maintien fréquence de sortie

Bit 05 = « 0 » : la fréquence de sortie actuelle (en Hz) est gelée. Modifier la fréquence de sortie gelée uniquement à l'aide des entrées digitales (5-10 E.digit.born.18 à 5-15 E.digit.born.33) programmées sur Accélération et Décélération.

AVIS!

Si la fonction Gel sortie est active, le variateur de fréquence ne peut s'arrêter qu'en procédant comme suit :

- Bit 03, Arrêt en roue libre
- Bit 02, Freinage CC
- Entrée digitale (5-10 E.digit.born.18 à 5-15 E.digit.born.33) programmée sur Freinage CC, Arrêt roue libre ou Reset et Arrêt roue libre.

Bit 06, Arrêt/marche rampe

Bit 06 = « 0 » : entraîne l'arrêt, la vitesse du moteur suit la rampe de décélération jusqu'à l'arrêt via le paramètre de rampe de décélération sélectionné. Bit 06 = « 1 » : permet au variateur de fréquence de lancer le moteur si les autres conditions de démarrage sont remplies.

Faire une sélection au par. 8-53 Sélect.dém. afin d'établir la liaison entre le bit 06 Arrêt/marche rampe et la fonction correspondante d'une entrée digitale.

Bit 07, Reset

Bit 07 = <0 » : pas de reset. Bit 07 = <1 » : remet à zéro un état de défaut. Le reset est activé au début du signal, c'est-à-dire au changement de <0 » logique pour <1 » logique.

Bit 08, Jogging

Bit 08 = « 1 » : la fréquence de sortie est déterminée par le par. 3-19 Fréq.Jog. [tr/min].

Bit 09, Choix de rampe 1/2

Bit 09 = « 0 » : la rampe 1 est active (3-41 Temps d'accél. rampe 1 à 3-42 Temps décél. rampe 1). Bit 09 = « 1 » : la rampe 2 (3-51 Temps d'accél. rampe 2 à 3-52 Temps décél. rampe 2) est active.

Bit 10, Données non valides/valides

Indique au variateur de fréquence dans quelle mesure le mot de contrôle doit être utilisé ou ignoré.

Bit 10 = « 0 » : le mot de contrôle est ignoré. Bit 10 = « 1 » : le mot de contrôle est utilisé. Cette fonction est pertinente car le télégramme contient toujours le mot de contrôle, indépendamment du type de télégramme. Désactiver le mot de contrôle si l'on ne souhaite pas l'utiliser pour mettre des paramètres à jour ou les lire.

Bit 11, Relais 01

Bit 11 = « 0 » : le relais n'est pas activé.

Bit 11 = « 1 » : le relais 01 est activé à condition d'avoir sélectionné *Mot contrôle bit 11* au par. *5-40 Fonction relais*.

Bit 12, Relais 04

Bit 12 = « 0 » : le relais 04 n'est pas activé.

Bit 12 = « 1 » : le relais 04 est activé à condition d'avoir sélectionné *Mot contrôle bit 12* au par. *5-40 Fonction relais*.

Bits 13/14, Sélection de process

Utiliser les bits 13 et 14 pour choisir entre les quatre process selon le *Tableau 12.22*

Process	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

Tableau 12.22 4 process de menu

Cette fonction n'est possible que lorsque *Multi process* est sélectionné au par. *0-10 Process actuel*.

Faire une sélection au par. 8-55 Sélect.proc. afin d'établir la liaison entre les bits 13/14 et la fonction correspondante des entrées digitales.

Bit 15 Inverse

Bit 15 = « 0» : pas d'inversion.

Bit 15 = « 1 » : inversion. Dans le réglage par défaut, l'inversion est réglée sur Entrée dig. au par.

*8-54 Sélect.Invers.*Le bit 15 n'implique une inversion qu'à condition d'avoir sélectionné Bus, Digital et bus ou Digital ou bus.

12.13.2 Mot d'état selon profil FC (STW) (8-10 Profil de ctrl = profil FC)

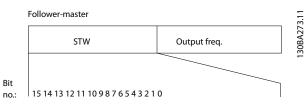


Illustration 12.17 Mot d'état

Bit	Bit = 0	Bit = 1
00	Commande non prête	Commande prête
01	Var. pas prêt	Variateur prêt
02	Roue libre	Activé (démarrage
		possible)
03	Pas d'erreur	Alarme
04	Pas d'erreur	Erreur (pas de déclen-
		chement)
05	Réservé	-
06	Pas d'erreur	Alarme verrouillée
07	Absence d'avertissement	Avertissement
08	Vitesse ≠ référence	Vitesse = référence
09	Commande locale	Contrôle par bus
10	Hors limite fréquence	Limite de fréquence OK
11	Inactif	Fonctionne
12	Variateur OK	Arrêté, démarrage
		automatique
13	Tension OK	Tension dépassée
14	Couple OK	Couple dépassé
15	Temporisation OK	Temporisation dépassée

Tableau 12.23 Bits de mot d'état

Explication des bits d'état

Bit 00, Commande non prête/prête

Bit 00 = <0 » : le variateur de fréquence disjoncte. Bit 00 = <1 » : le variateur de fréquence est prêt à fonctionner mais l'étage de puissance n'est pas forcément alimenté (en cas d'alimentation 24 V externe de la commande).

Bit 01, Variateur prêt

Bit 01 =« 1» : le variateur de fréquence est prêt à fonctionner mais un ordre de roue libre est actif via les entrées digitales ou la communication série.

Bit 02, Arrêt roue libre

Bit 02 = < 0 » : le variateur de fréquence lâche le moteur. Bit 02 = < 1 » : le variateur de fréquence démarre le moteur à l'aide d'un ordre de démarrage.

Bit 03, Pas d'erreur/alarme

Bit 03 = < 0 » : le variateur de fréquence n'est pas en état de panne. Bit 03 = < 1 » : le variateur de fréquence disjoncte. Pour rétablir le fonctionnement, appuyer sur [Reset].

Bit 04, Pas d'erreur/erreur (pas de déclenchement)

Bit 04 = (0): le variateur de fréquence n'est pas en état de panne. Bit 04 = (1): le variateur de fréquence indique une erreur mais ne disjoncte pas.

Bit 05, Inutilisé

Le bit 05 du mot d'état n'est pas utilisé.

Bit 06, Pas d'erreur/alarme verrouillée

Bit 06 = < 0 » : le variateur de fréquence n'est pas en état de panne. Bit 06 = < 1 » : le variateur de fréquence a disjoncté et est verrouillé.

Bit 07, Absence d'avertissement/avertissement

Bit 07 = < 0 » : il n'y a pas d'avertissements. Bit 07 = < 1 » : un avertissement s'est produit.

Bit 08, Vitesse ≠ référence/vitesse = référence

Bit 08 = <0 » : le moteur tourne mais la vitesse actuelle est différente de la référence de vitesse réglée. Ceci peut par exemple être le cas au moment des accélérations et décélérations de rampe en cas d'arrêt/marche. Bit 08 = <0 » : la vitesse du moteur est égale à la référence de vitesse réglée.

Bit 09, Commande locale/contrôle par bus

Bit 09 = « 0 » : [STOP/RESET] est activé sur l'unité de commande ou *Commande locale* est sélectionné au par. *3-13 Type référence*. Le contrôle via la communication série est impossible.

Bit 09 = « 1 » : il est possible de commander le variateur de fréquence via le bus de terrain/la communication série.

Bit 10, Hors limite fréquence

Bit 10 = « 0 » : la fréquence de sortie a atteint la valeur réglée au par. 4-11 Vit. mot., limite infér. [tr/min] ou 4-13 Vit.mot., limite supér. [tr/min].

Bit 10 = « 1 » : la fréquence de sortie figure dans les limites mentionnées.

Bit 11, Pas d'exploitation/exploitation

Bit 11 = < 0 »: le moteur ne fonctionne pas.

Bit 11 = « 1 » : le variateur de fréquence a reçu un signal de démarrage ou la fréquence de sortie est supérieure à 0 Hz

Bit 12, Variateur OK/arrêté, démarrage auto

Bit $12 = \ll 0$ » : l'onduleur n'est pas soumis à une surtempérature temporaire.

Bit 12 = « 1 » : l'onduleur est arrêté à cause d'une surtempérature mais l'unité n'a pas disjoncté et poursuit son fonctionnement dès que la surtempérature disparaît.

Bit 13, Tension OK/limite dépassée

Bit 13 = « 0 » : absence d'avertissement de tension. Bit 13 = « 1 » : la tension CC du circuit intermédiaire du variateur de fréquence est trop faible ou trop élevée.

Bit 14, Couple OK/limite dépassée

Bit 14 = « 0 » : le courant du moteur est inférieur à la limite de couple sélectionnée au par. 4-18 Limite courant. Bit 14 = « 1 » : la limite de couple du par. 4-18 Limite courant a été dépassée.

Bit 15, Temporisation OK/limite dépassée

Bit 15 = < < 0 >: les temporisations de protection thermique du moteur et de protection thermique n'ont pas dépassé 100 %.

Bit 15 = « 1 » : l'une des temporisations a dépassé 100 %.

Tous les bits du STW sont réglés sur « 0 » si la connexion entre l'option Interbus et le variateur de fréquence est perdue ou si un problème de communication interne est survenu.

12.13.3 Valeur de référence de vitesse du bus

La vitesse de référence est transmise au variateur de fréquence par une valeur relative en %. La valeur est transmise sous forme d'un mot de 16 bits ; en nombres entiers (0-32767), la valeur 16384 (4000 hexadécimal) correspond à 100 %. Les nombres négatifs sont exprimés en complément de 2. La fréquence de sortie réelle (MAV) est mise à l'échelle de la même façon que la référence du bus.

Master-follower		6.11
	16bit	7276
CTW	Speed ref.	130BA27
Follower-master		
STW	Actual output freq.	

Illustration 12.18 Fréquence de sortie réelle (MAV)

La référence et la MAV sont toujours mises à l'échelle de la façon suivante :

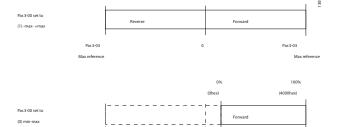


Illustration 12.19 Référence et MAV

12.13.4 Mot de contrôle selon le Profil PROFIdrive (CTW)

Le mot de contrôle est utilisé pour envoyer des commandes à un suiveur à partir d'un maître (p. ex. un PC).

Bit	Bit = 0	Bit = 1
00	OFF 1	ON 1
01	OFF 2	ON 2
02	OFF 3	ON 3
03	Roue libre	Pas de roue libre
04	Arrêt rapide	Ramp
05	Maintien fréquence de sortie	Utiliser la rampe
06	Arrêt rampe	Démarrage
07	Pas de fonction	Reset
08	Jog 1 OFF	Jog 1 ON
09	Jog 2 OFF	Jogging 2 ON
10	Données non valides	Données valides
11	Pas de fonction	Ralentis.
12	Pas de fonction	Rattrapage
13	Configuration des	Sélection Isb
	paramètres	
14	Configuration des	Sélection msb
	paramètres	
15	Pas de fonction	Inverse

Tableau 12.24 Bits du mot de contrôle

Signification des bits de contrôle

Bit 00, OFF 1/ON 1

La rampe normale s'arrête via les temps de la rampe en cours de sélection.

Bit 00 = <0 » implique l'arrêt et l'activation du relais de sortie 1 ou 2 si la fréquence de sortie est de 0 Hz et si [Relais 123] est sélectionné au par. 5-40 Fonction relais. Bit 00 = <0 » signifie que le variateur de fréquence est en

Etat 1 : « Commutation sur inhibée ».

Bit 01, OFF 2/ON 2

Arrêt en roue libre

Bit 01 = « 0 » : arrêt en roue libre et activation du relais de sortie 1 ou 2 si la fréquence de sortie est de 0 Hz et si [Relais 123] a été sélectionné au par. 5-40 Fonction relais.

Bit 02, OFF 3/ON 3

Arrêt rapide utilisant le temps de rampe du 3-81 Temps rampe arrêt rapide. Bit 02 = « 0 » : arrêt rapide et activation du relais de sortie 1 ou 2 si la fréquence de sortie est de 0 Hz et si [Relais 123] a été sélectionné au par. 5-40 Fonction relais.

Bit 02 = « 1 » signifie que le variateur de fréquence est en Etat 1 : « Commutation sur inhibée ».

Bit 03, Roue libre/pas de roue libre

Arrêt roue libre Bit 03=« 0 » entraîne l'arrêt. Lorsque le bit 03=« 1 », le variateur de fréquence peut démarrer si les autres conditions de démarrage sont remplies.

AVIS!

La sélection dans le par. 8-50 Sélect.roue libre détermine comment le bit 03 est lié à la fonction correspondante des entrées digitales.

Bit 04, Arrêt rapide/Rampe

Arrêt rapide utilisant le temps de rampe du 3-81 Temps rampe arrêt rapide.

Bit 04 = < 0 » : un arrêt rapide se produit. Lorsque le bit 04 = < 1 », le variateur de fréquence peut démarrer si les autres conditions de démarrage sont remplies.

AVIS!

La sélection au par. 8-51 Sélect. arrêt rapide détermine comment le bit 04 est relié à la fonction correspondante des entrées digitales.

Bit 05, Maintien fréquence sortie/utiliser rampe

Bit 05 = < < 0 >: la fréquence de sortie actuelle peut être maintenue même si la référence est modifiée. Lorsque le bit 05 = < < 1 >, le variateur de fréquence peut assurer à nouveau sa fonction de réglage ; le fonctionnement s'effectue selon la référence respective.

Bit 06, Arrêt/Marche rampe

L'arrêt normal de rampe utilise les temps de la rampe effective sélectionnée. En outre, activation du relais de sortie 01 ou 04 si la fréquence de sortie est de 0 Hz et si Relais 123 est sélectionné au par. *5-40 Fonction relais*. Bit 06 = < 0 » entraîne l'arrêt. Lorsque le bit 06 = < 1 », le variateur de fréquence peut démarrer si les autres conditions de démarrage sont remplies.

AVIS!

La sélection au par. 8-53 Sélect.dém. détermine comment le bit 06 est relié à la fonction correspondante des entrées digitales.

Bit 07, Pas de fonction/réinitialisation

Réinitialisation après déconnexion.

Accuse réception de l'événement dans le tampon des pannes.

Quand bit 07=« 0 », aucun reset n'a lieu.

En cas de changement de pente du bit 07 à « 1 », une réinitialisation a lieu après la mise hors tension.

Bit 08, Jog 1 OFF/ON

Activation de la vitesse prédéfinie au 8-90 Vitesse Bus Jog 1. JOG 1 est possible seulement si bit 04 = < 0 » et bit 00-03 = < 1 ».

Bit 09, Jog 2 OFF/ON

Activation de la vitesse prédéfinie au par. 8-91 Vitesse Bus $Jog\ 2$. $JOG\ 2$ est possible seulement si bit $04 = \ 0$ » et bit $00-03 = \ 1$ ».

Bit 10, Données non valides/valides

S'utilise pour indiquer au variateur de fréquence dans quelle mesure le mot de contrôle doit être utilisé ou ignoré.

Bit 10 = « 0 » implique que le mot de contrôle est ignoré. Bit 10 = « 1 » implique que le mot de contrôle est utilisé. Cette fonction est pertinente du fait que le mot de contrôle est toujours contenu dans le message quel que soit le type de télégramme utilisé, c'est-à-dire qu'il est possible de déconnecter le mot de contrôle si l'on ne souhaite pas l'utiliser pour mettre à jour ou lire des paramètres.

Bit 11, Pas de fonction/ralentissement

Sert à diminuer la référence de vitesse d'un montant égal à la valeur figurant au par. 3-12 Rattrap/ralentiss. Lorsque le bit 11 = « 0 », la référence n'est pas modifiée. Bit 11 = « 1 » : la référence est diminuée.

Bit 12, Pas de fonction/rattrapage

Sert à augmenter la référence de vitesse d'un montant égal à la valeur figurant au par. 3-12 Rattrap/ralentiss. Lorsque le bit 12 = « 0 », la référence n'est pas modifiée. Bit 12 = « 1 » : la référence est augmentée. Si les fonctions de ralentissement et d'accélération sont

si les fonctions de ralentissement et d'accélération sont activées (bits 11 et 12 = « 1 »), le ralentissement a la priorité, c'est-à-dire que la valeur de référence de la vitesse sera diminuée.

Bits 13/14, Sélection de process

Les bits 13 et 14 sont utilisés pour choisir entre les quatre configurations de paramètres selon le *Tableau 12.25* :

Cette fonction n'est possible que lorsque [9] Multi process est sélectionné au par. 0-10 Process actuel. La sélection au par. 8-55 Sélect.proc. détermine comment les bits 13 et 14 sont reliés à la fonction correspondante des entrées digitales. Il est seulement possible de changer le process en cours si les process ont été reliés au par. 0-12 Ce réglage lié à.

Process	Bit 13	Bit 14
1	0	0
2	1	0
3	0	1
4	1	1

Tableau 12.25 Sélection de process

Bit 15, Pas de fonction/inverse

Bit 15=« 0 » implique une absence d'inversion.

Bit 15 =« 1» implique une inversion.

Remarque : dans le réglage d'usine, l'inversion est réglée sur *Entrée dig.* au par. *8-54 Sélect.Invers.*

AVIS!

Le bit 15 n'implique une inversion qu'à condition d'avoir sélectionné *Communication série*, *Logique* ou *Logique et*.

12.13.5 Mot d'état selon le Profil PROFIdrive (STW)

Le mot d'état sert à communiquer l'état d'un suiveur à un maître (par exemple un PC).

Bit	Bit = 0	Bit = 1
00	Commande non prête	Commande prête
01	Var. pas prêt	Variateur prêt
02	Roue libre	Activé (démarrage possible)
03	Pas d'erreur	Alarme
04	OFF 2	ON 2
05	OFF 3	ON 3
06	Démarrage possible	Démarrage impossible
07	Absence d'avertis-	Avertissement
	sement	
08	Vitesse ≠ référence	Vitesse = référence
09	Commande locale	Contrôle par bus
10	Hors limite fréquence	Limite de fréquence OK
11	Inactif	Fonctionne
12	Variateur OK	Arrêté, démarrage
		automatique
13	Tension OK	Tension dépassée
14	Couple OK	Couple dépassé
15	Temporisation OK	Temporisation dépassée

Tableau 12.26 Bits de mot d'état

Explication des bits d'état

Bit 00, Commande non prête/prête

Lorsque le bit 00 = « 0 », le bit 00, 01 ou 02 du mot de contrôle est sur « 0 » (OFF 1, OFF 2 ou OFF 3) - ou le variateur de fréquence est déconnecté (arrêt). Lorsque le bit 00 = « 1 », la commande du variateur de fréquence est prête, mais on ne dispose pas obligatoirement d'une alimentation vers le bloc présent (dans le cas d'une alimentation externe de 24 V du système de contrôle).

Bit 01, VLT non prêt/prêt

Même signification que le bit 00 ; toutefois, on dispose ici d'une alimentation vers le bloc de puissance. Le variateur de fréquence est prêt lorsqu'il reçoit les signaux de démarrage requis.

Bit 02, Roue libre/activer

Lorsque le bit 02 = « 0 », le bit 00, 01 ou 02 du mot de contrôle est sur « 0 » (OFF 1, OFF 2 ou OFF 3 ou roue libre) - ou le variateur de fréquence est déconnecté (arrêt/mise en défaut).

Lorsque le bit 02 = « 1 », le bit 00, 01 ou 02 du mot de contrôle est sur « 1 » ; le variateur de fréquence ne s'est pas arrêté.

Bit 03, Pas d'erreur/alarme

Lorsque le bit 03 = < 0 >, le variateur de fréquence n'est pas en état d'erreur.

Lorsque le bit 03 = « 1 », le variateur de fréquence s'est arrêté et requiert un signal de réinitialisation pour pouvoir redémarrer.

Bit 04, ON 2/OFF 2

Bit 04 = (0): le bit 01 du mot de contrôle est sur (0). Bit 04 = (1): le bit 01 du mot de contrôle est sur (1):

Bit 05, ON 3/OFF 3

Bit $05 = \langle 0 \rangle$: le bit 02 du mot de contrôle est sur $\langle 0 \rangle$. Bit $05 = \langle 0 \rangle$: le bit 02 du mot de contrôle est sur $\langle 1 \rangle$.

Bit 06, Démarrage possible/impossible

Si PROFIdrive a été sélectionné au par. 8-10 Profil mot contrôle, le bit 06 est sur « 1 » après un acquittement de déconnexion, après l'activation de OFF2 ou de OFF3 et après l'enclenchement de la tension secteur. Démarrage impossible est réinitialisé, avec le bit 00 du mot de contrôle sur « 0 », et les bits 01, 02 et 10 sur « 1 ».

Bit 07, Absence d'avertissement/avertissement

Bit 07=« 0 » signifie qu'il n'y a pas d'avertissements. Bit 07=« 1 » signifie l'apparition d'un avertissement.

Bit 08, Vitesse ≠ référence/vitesse = référence

Bit 08 = « 0 » signifie que la vitesse effective du moteur dévie de la référence de vitesse définie. Cela peut être par exemple le cas si la vitesse a été modifiée au démarrage/à l'arrêt par la rampe d'accélération/de décélération. Bit 08 = « 1 » signifie que la vitesse effective du moteur correspond à la référence de vitesse définie.

Bit 09, Exploitation locale/contrôle du bus

Bit 09 = « 0 » indique que le variateur de fréquence a été arrêté au moyen de la touche [Stop] du LCP ou que [Mode hand/auto] ou [Local] a été sélectionné au par. 3-13 Type référence.

Bit $09 = \ll 1$ » indique que le variateur de fréquence est commandé par l'interface série.

Bit 10, Hors limite fréquence/limite de fréquence OK Lorsque le bit 10 = « 0 », cela indique que la fréquence de sortie se trouve en dehors des limites définies aux par. 4-52 Avertis. vitesse basse et 4-53 Avertis. vitesse haute. Bit 10 = « 1 » indique que la fréquence de sortie se trouve dans les limites mentionnées.

Bit 11, Pas d'exploitation/exploitation

Bit 11 = « 0 » indique que le moteur ne tourne pas. Bit 11 = « 1 » indique que le variateur de fréquence dispose d'un signal de démarrage, ou que la fréquence de sortie est supérieure à 0 Hz.

Bit 12, Variateur OK/arrêté, démarrage auto

Bit $12 = \alpha \ 0$ », l'onduleur n'est soumis à aucune surcharge temporaire.

Bit 12 = « 1 » indique que l'onduleur s'est arrêté en raison d'une surcharge. Toutefois, le variateur de fréquence ne s'est pas déconnecté (avec mise en défaut) et redémarre dès la disparition de la surcharge.

Bit 13, Tension OK/tension dépassée

Bit $13 = \ll 0$ » indique que les limites de tension du variateur de fréquence ne sont pas dépassées. Bit $13 = \ll 1$ » indique que la tension continue dans le circuit intermédiaire du variateur de fréquence est trop faible ou trop élevée.

Bit 14, Couple OK/couple dépassé

Bit 14 = « 0 » signifie que le couple du moteur est inférieur à la limite sélectionnée aux par. 4-16 Mode moteur limite couple et 4-17 Mode générateur limite couple.

Bit 14 = « 1 » : la limite du couple sélectionnée aux par.

4-16 Mode moteur limite couple et 4-17 Mode générateur limite couple est dépassée.

Bit 15, Temporisation OK/temporisation dépassée

Bit 15 =« 0» indique que les temporisations de la protection thermique du moteur et de la protection thermique du variateur de fréquence n'ont pas dépassé 100%.

Bit 15 =« 1» indique que l'une des temporisations a dépassé 100%.

Indice	Communication série RS 485
	Communication série USB78
A	Commutation sur la sortie39
Abréviations8	Condensation
Absence sûre du couple 146, 165	Conditions ambiantes75
Alimentation secteur 10, 57, 68, 69, 70, 74	Conditions de refroidissement112
AMA avec borne 27 connectée	Conditions d'émission 55
AMA sans borne 27 connectée 145	Conditions d'exploitation extrêmes 38
Applications de couple constant (mode CT)	Conditions d'immunité 55
Applications de couple variable (quadratique) (VT)	Conventions8
Arrêt de sécurité 1165	Couple de serrage du couvercle avant 110, 111
	Courant de fuite 14, 114, 136
В	Courant du capteur15
Blindé/armé133	Court-circuit (phase moteur-phase)
Borne X30/11, 12 154	Ctrl frein mécanique
Borne X30/1-4 154	·
Borne X30/6, 7	D
Borne X30/8 154	Débouchures 116
Bruit acoustique 50, 88	Déclassement automatique
	Déclassement pour basse pression atmosphérique
C	Déclassement pour un fonctionnement à faible vitesse 49
Câblage de commande	Déclassement, manuel
Câblage de la résistance de freinage	Définitions9
Câble: spécifications	Démarrage imprévu 13
Câble blindé	Démarrage par impulsion/arrêt146
Câble blindé/armé	DeviceNet93
Câble moteur 114, 133, 141	Directive basse tension 11
Câble, longueurs et sections de câble	Directive CEM 11
Câble, moteur	Directive sur les machines11
Câbles moteur	Disjoncteur 120, 124
Capteur	•
Capteur de température164	É
Caractéristiques de contrôle	Émission par rayonnement 54
Caractéristiques de couple	Émission transmise 54
Caractéristiques de sortie (U, V, W)	Émissions CEM 52
Carte de commande	
Chocs	E
Circuit intermédiaire 15, 20, 38, 59, 85	Encombrement
Circulation d'air 51	Entrées analogiques
Code de fonction	Entrées codeur/impulsions 77
Code d'exception Modbus	Entrées digitales
Codeur HTL166	Environnement75
Codeur TTL 166	,
Commande de couple 19	É
Commander à partir du code type89	Équipement optionnel 8
Communication série	Équipotentialité 114

		Logiciel de calcul des harmoniques (HCS)	140
E		Logique de commande	15
Essai de haute tension	144	Longueur du télégramme (LGE)	180
Exemples d'applications	145		
Exigences de sécurité	109	M	
_		Maintenance	51
F		Marche/arrêt impulsions	146
Fil de terre	114	Marquage CE	11
Filtre	51	MCT 10	140
Filtre RFI	50, 88	MCT 31	140
Filtre sinus 15, 10	05, 133, 171	Mise à l'échelle	33
Filtres	51	Modbus RTU	185
Filtres harmoniques	103	Modulation d'impulsions en durée	15
Flux	22, 23	Moment d'inertie	38
Fonction de freinage	62	Montage côte à côte	112
Fonctionnement en moulinet	14	Montage mécanique	112
Frein électromécanique	150	Mot d'état	192, 196
Frein IGBT	15	Mot de contrôle	191, 194
Frein mécanique	43		
Freinage CC	191	N	
Fusible	124	Niveau de tension	75
		Numéros de code	89, 94
G		Numéros de commande	107
Gel référence	32	Numéros de commande : modules de filtre sinus	105
Н		Numéros de commande, filtres harmoniques	103
Haute tension	12	0	
HCS			4.5
Humidité		Onduleur	
numate	40	Options et accessoires	
I		Ordre de démarrage/arrêt	146
Installation et configuration de l'interface RS-485	177	P	
Instruction de mise au rebut	12	Panne de secteur	42
Interférences CEM	19	PELV	145
Interférences électriques	114	Performance	78
Inversion	147	Personnel qualifié	
Isolation galvanique	164	Phases moteur	
		PID 19,	21, 24, 164
J		PID vitesse	
Jog	192	Plaque de découplage	
		Point de couplage commun	
K		Potentiomètre	
Kit de protection IP21/Type 1	172	Poussière	
		Précautions CEM	
L		Précautions ceivi	
LCP	29, 174	J	
Limites de référence	32	Profibus	93

Programmation de la limite de couple et d'arrêt	150
Protection	59
Protection du circuit de dérivation	124
Protection thermique	11
Protection thermique du moteur	193
Puissance de freinage	9, 62
Puissance d'entrée	19, 114
Puissance du moteur	74
PUISSANCE MOTEUR	114
R	
Raccordement de relais	137
Raccordement du bus CC	
Raccordement du moteur	
Raccordement du réseau	
Rapport de court-circuit	
Rattrapage/ralentissement	
Redresseur	
Référence	
Référence de vitesse	
Référence de vitesse analogique	
Refroidissement	
Régulateur PID de process	
Réinitialisation d'alarme externe	
Rendement	
Répartition de la charge	
Résistance de freinage	
Résistance de l'armoire	
Résultats des essais CEM	
Retour moteur	
Roue libre	
RS-485	
100	1 10, 177
S	
Sacs d'accessoires	94
Schéma de câblage	17
Sectionneur secteur	
Signal	165, 166
Sonde thermique	
Sortie 10 V CC	
Sortie 24 V CC	
Sortie analogique	
Sortie digitale	
Sorties relais	
Surtension générée par le moteur	
Système de contrôle de la sécurité	

Т	
Température	48
Température ambiante	48
Température maximale	48
Temps de décharge	14
Temps de freinage	61
Temps de montée	85
Tension moteur	85
Thermistance	10, 145
Thermistance moteur	148
U U/f	20, 87
V	
Versions du logiciel	94
Vibrations	50
Vitesses prédéfinies	147
Vue d'ensemble du Modbus RTU	185
Vue d'ensemble du protocole	179
VVCplus	9, 15, 21
Z	
Zone morte	34

www.danfoss.com/drives

Danfoss décline toute responsabilité quant aux erreurs qui se seraient glissées dans les catalogues, brochures ou autres documentations écrites. Dans un souci constant d'amélioration, Danfoss se réserve le droit d'apporter sans préavis toutes modifications à ses produits, y compris ceux se trouvant déjà en commande, sous réserve, toutefois, que ces modifications n'affectent pas les caractéristiques déjà arrêtées en accord avec le client. Toutes les marques de fabrique de cette documentation sont la propriété des sociétés correspondantes. Danfoss et le logotype Danfoss sont des marques de fabrique de Danfoss A/S. Tous droits réservés.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten www.danfoss.com/drives

